A084177 Binomial transform of Jacobsthal oblongs.
0, 1, 5, 27, 137, 691, 3465, 17347, 86777, 433971, 2170025, 10850467, 54253017, 271266451, 1356334985, 6781680387, 33908412857, 169542086131, 847710474345, 4238552459107, 21192762470297, 105963812701011, 529819064204105
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (6,-3,-10).
Crossrefs
Cf. A001045.
Programs
-
Magma
[(2*5^n-(-1)^n-2^n)/9: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
Formula
a(n) = (2*5^n - (-1)^n - 2^n)/9.
G.f.: x*(1-x)/((1+x)*(1-2*x)*(1-5*x)).
a(n) = 6*a(n-1) - 3*a(n-2) - 10*a(n-3).
E.g.f.: (2*exp(5*x) - exp(2*x) - exp(-x))/9.
Comments