A084239 Rank of K-groups of Furstenberg transformation group C*-algebras of n-torus.
1, 2, 3, 4, 6, 8, 13, 20, 32, 52, 90, 152, 268, 472, 845, 1520, 2766, 5044, 9277, 17112, 31724, 59008, 110162, 206260, 387282, 729096, 1375654, 2601640, 4929378, 9358944, 17797100, 33904324, 64678112, 123580884, 236413054, 452902072
Offset: 0
Keywords
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..500
- K. Reihani, C*-algebras from Anzai flows and their K-groups, arXiv preprint arXiv:math/0311425 [math.OA], 2003.
- K. Reihani, K-theory of Furstenberg transformation group C^*-algebras, arXiv preprint arXiv:1109.4473 [math.OA], 2011.
Crossrefs
Cf. A000980.
Programs
-
Maple
A084239 := proc(n) local tt,c ; if type(n,'odd') then product( 1+t^(i-(n+1)/2),i=1..n) ; else (1+t^(1/2))*product( 1+t^(i-(n+1)/2),i=1..n) ; end if; tt := expand(%) ; for c in tt do if c = lcoeff(c) then return c ; end if; end do: end proc: # R. J. Mathar, Nov 13 2016
-
Mathematica
a[n_] := SeriesCoefficient[If[OddQ[n], 1, 1 + Sqrt[t]]*Product[1 + t^(i - (n + 1)/2), {i, n}], {t, 0, 0}]; Array[a, 36, 0] (* Jean-François Alcover, Nov 24 2017 *)
Formula
a(n) = constant term of prod(i=1, n, 1+t^(i-.5(n+1))) for odd n and a(n) = constant term of (1+t^(.5))*prod(i=1, n, 1+t^(i-.5(n+1))) for even n.
Sums of antidiagonals of A067059, i.e. a(n) is sum over k of number of partitions of [k(n-k)/2] into up to k parts each no more than n-k. Close to 2^(n+1)*sqrt(6/(Pi*n^3)) and seems to be even closer to something like 2^(n+1)*sqrt(6/(Pi*(n^3+0.9*n^2-0.1825*n+1.5))). - Henry Bottomley, Jul 20 2003
Extensions
More terms from Henry Bottomley, Jul 20 2003