cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084239 Rank of K-groups of Furstenberg transformation group C*-algebras of n-torus.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 13, 20, 32, 52, 90, 152, 268, 472, 845, 1520, 2766, 5044, 9277, 17112, 31724, 59008, 110162, 206260, 387282, 729096, 1375654, 2601640, 4929378, 9358944, 17797100, 33904324, 64678112, 123580884, 236413054, 452902072
Offset: 0

Views

Author

Kamran Reihani (reyhan_k(AT)modares.ac.ir), Jun 21 2003

Keywords

Crossrefs

Cf. A000980.

Programs

  • Maple
    A084239 := proc(n)
        local tt,c ;
        if type(n,'odd') then
            product( 1+t^(i-(n+1)/2),i=1..n) ;
        else
            (1+t^(1/2))*product( 1+t^(i-(n+1)/2),i=1..n) ;
        end if;
        tt := expand(%) ;
        for c in tt do
            if c = lcoeff(c) then
                return c ;
            end if;
        end do:
    end proc: # R. J. Mathar, Nov 13 2016
  • Mathematica
    a[n_] := SeriesCoefficient[If[OddQ[n], 1, 1 + Sqrt[t]]*Product[1 + t^(i - (n + 1)/2), {i, n}], {t, 0, 0}];
    Array[a, 36, 0] (* Jean-François Alcover, Nov 24 2017 *)

Formula

a(n) = constant term of prod(i=1, n, 1+t^(i-.5(n+1))) for odd n and a(n) = constant term of (1+t^(.5))*prod(i=1, n, 1+t^(i-.5(n+1))) for even n.
Sums of antidiagonals of A067059, i.e. a(n) is sum over k of number of partitions of [k(n-k)/2] into up to k parts each no more than n-k. Close to 2^(n+1)*sqrt(6/(Pi*n^3)) and seems to be even closer to something like 2^(n+1)*sqrt(6/(Pi*(n^3+0.9*n^2-0.1825*n+1.5))). - Henry Bottomley, Jul 20 2003

Extensions

More terms from Henry Bottomley, Jul 20 2003