Original entry on oeis.org
1, 3, 8, 20, 49, 119, 289, 707, 1749, 4379, 11092, 28412, 73573, 192535, 508918, 1357770, 3653343, 9905437, 27040975, 74269569, 205091177, 569078255, 1585839062, 4436191950, 12452408525, 35062157207, 99000292173, 280242836387, 795124827781, 2260758570327
Offset: 0
A000980
Number of ways of writing 0 as Sum_{k=-n..n} e(k)*k, where e(k) is 0 or 1.
Original entry on oeis.org
2, 4, 8, 20, 52, 152, 472, 1520, 5044, 17112, 59008, 206260, 729096, 2601640, 9358944, 33904324, 123580884, 452902072, 1667837680, 6168510256, 22903260088, 85338450344, 318995297200, 1195901750512, 4495448217544, 16940411201280, 63983233268592
Offset: 0
From _Gus Wiseman_, Apr 23 2023: (Start)
The a(0) = 2 through a(2) = 8 subsets of {-n..n} with sum 0 are:
{} {} {}
{0} {0} {0}
{-1,1} {-1,1}
{-1,0,1} {-2,2}
{-1,0,1}
{-2,0,2}
{-2,-1,1,2}
{-2,-1,0,1,2}
(End)
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
- E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see pp. 715-717.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Ray Chandler, Table of n, a(n) for n = 0..1668 (terms < 10^1000; terms 0..200 from T. D. Noe, terms 201..400 from Alois P. Heinz)
- Eunice Y. S. Chan and R. M. Corless, Narayana, Mandelbrot, and A New Kind of Companion Matrix, arXiv preprint arXiv:1606.09132 [math.CO], 2016.
- R. C. Entringer, Representation of m as Sum_{k=-n..n} epsilon_k k, Canad. Math. Bull., 11 (1968), 289-293.
- Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
- J. H. van Lint, Representations of 0 as Sum_{k = -N..N} epsilon_k*k, Proc. Amer. Math. Soc., 18 (1967), 182-184.
-
a000980 n = length $ filter ((== 0) . sum) $ subsequences [-n..n]
-
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
`if`(i=0, 1, 2*b(n, i-1)+b(n+i, i-1)+b(abs(n-i), i-1)))
end:
a:=n-> 2*b(0, n):
seq(a(n), n=0..40); # Alois P. Heinz, Mar 10 2014
-
a[n_] := SeriesCoefficient[ Product[1+x^k, {k, -n, n}], {x, 0, 0}]; a[0] = 2; Table[a[n], {n, 0, 24}](* Jean-François Alcover, Nov 28 2011 *)
nmax = 26; d = {2}; a1 = {};
Do[
i = Ceiling[Length[d]/2];
AppendTo[a1, If[i > Length[d], 0, d[[i]]]];
d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n] +
2 PadLeft[PadRight[d, Length[d] + n], Length[d] + 2 n];
, {n, nmax}];
a1 (* Ray Chandler, Mar 15 2014 *)
Table[Length[Select[Subsets[Range[-n,n]],Total[#]==0&]],{n,0,5}] (* Gus Wiseman, Apr 23 2023 *)
-
a(n)=polcoeff(prod(k=-n,n,1+x^k),0)
Showing 1-2 of 2 results.
Comments