A084248 Decimal expansion of c = Product_{k>=1} (1 + 1/t(k)) where t(k) = k(k+1)/2 is the k-th triangular number.
5, 0, 7, 9, 2, 2, 0, 2, 0, 8, 6, 6, 3, 6, 7, 8, 3, 3, 6, 0, 4, 3, 6, 8, 7, 9, 5, 6, 7, 8, 2, 0, 2, 1, 0, 7, 4, 8, 3, 2, 3, 9, 7, 3, 4, 5, 7, 0, 8, 3, 5, 9, 7, 7, 4, 2, 8, 4, 8, 2, 4, 3, 7, 9, 1, 6, 8, 7, 4, 5, 9, 0, 9, 3, 2, 9, 1, 9, 9, 0, 6, 9, 4, 7, 0, 1, 5, 4, 5, 4, 9, 0, 2, 3, 3, 4, 9, 0, 3, 6, 1, 0, 2, 8, 8
Offset: 1
Examples
5.07922020866367833604368795...
References
- Bruce C. Berndt, Ramanujan Notebook part II, Infinite series, Springer Verlag, 1989, p. 241.
Links
- Kelvin Voskuijl, Table of n, a(n) for n = 1..20000
Crossrefs
Cf. A000217.
Programs
-
Mathematica
RealDigits[Cosh[Pi/2*Sqrt[7]]/(2*Pi), 10, 120][[1]] (* Amiram Eldar, Jun 01 2023 *)
-
PARI
1/2/Pi*cosh(Pi/2*sqrt(7))
Formula
Equals ((1/2)/Pi)*cosh(Pi/2*sqrt(7)).