cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084254 Decimal expansion of Sum_{k>=1} 1/(k*(exp(2*Pi*k)-1)).

Original entry on oeis.org

0, 0, 1, 8, 7, 2, 6, 8, 2, 4, 4, 9, 7, 6, 8, 5, 4, 6, 1, 1, 5, 6, 3, 8, 5, 7, 9, 4, 7, 9, 9, 6, 1, 3, 9, 8, 8, 6, 9, 1, 6, 2, 8, 9, 5, 6, 5, 2, 6, 1, 9, 5, 6, 3, 8, 4, 1, 3, 3, 1, 5, 7, 4, 5, 3, 7, 8, 8, 4, 3, 1, 9, 5, 1, 7, 0, 9, 8, 0, 2, 2, 6, 7, 5, 1, 7, 0, 7, 2, 7, 8, 4, 0, 2, 4, 5, 6, 7, 9, 7, 9, 9, 8, 7
Offset: 0

Views

Author

Benoit Cloitre, Jun 21 2003

Keywords

Examples

			0.00187268244976854611563857947996139886916289565261...
		

References

  • Bruce C. Berndt, Ramanujan Notebook part II, Infinite series, Springer Verlag, 1989, pp. 280-281.

Crossrefs

Cf. A255695 (S(1,1)), A255697 (S(1,4)), A255698 (S(3,1)), A255699 (S(3,2)), A255700 (S(3,4)), A255701 (S(5,1)), A255702 (S(5,2)), A255703 (S(5,4)).

Programs

  • Mathematica
    digits = 104; S[1, 2] = NSum[1/(n*(Exp[2*Pi*n] - 1)), {n, 1, Infinity}, WorkingPrecision -> digits+10, NSumTerms -> digits]; RealDigits[S[1, 2], 10, digits] // First (* Jean-François Alcover, Mar 02 2015 *)
    Join[{0,0},RealDigits[Log[4/Pi]/4 - Pi/12 + Log[Gamma[3/4]], 10, 100][[1]]] (* Amiram Eldar, May 21 2022 *)
  • PARI
    1/4*log(4/Pi)-Pi/12+log(gamma(3/4))

Formula

Equals log(4/Pi)/4 - Pi/12 + log(Gamma(3/4)).
From Jean-François Alcover, Mar 02 2015: (Start)
This is the case k=1, m=2 of the Plouffe sum S(k,m) = Sum_{n >= 1} 1/(n^k*(exp(m*Pi*n)-1)).
Pi = 72*S(1,1) - 96*S(1,2) + 24*S(1,4). (End)
Equals Sum_{k>=1} sigma(k)/(k*exp(2*Pi*k)). - Amiram Eldar, Jun 05 2023