cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084262 Binomial transform of double factorials.

Original entry on oeis.org

1, 2, 6, 28, 188, 1656, 17992, 232016, 3460368, 58574368, 1109200736, 23230928832, 533139875776, 13304094478208, 358653008619648, 10387075613199616, 321626829363798272, 10602925778746753536, 370770015836513986048
Offset: 0

Views

Author

Paul Barry, May 26 2003

Keywords

Comments

Binomial transform of A001147.

Crossrefs

Programs

  • Mathematica
    a[n_] := HypergeometricPFQ[{1/2, -n}, {}, -2]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Aug 08 2012 *)
    CoefficientList[Series[E^x/(1-2*x)^(1/2), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 04 2014 *)

Formula

a(n) = Sum_{k=0..n} C(n, k)*(2*k)!/(k!*2^k).
E.g.f.: exp(x)/(1-2*x)^(1/2).
a(n) = (1/sqrt(2*Pi))*Integral_{x=1..oo} x^n*exp((1-x)/2)/sqrt(x-1) dx. - Paul Barry, Jan 28 2008
G.f.: 1/(1-x-x/(1-2x/(1-x-3x/(1-4x/(1-x-5x/(1-6x/(1-x-7x/(1-... (continued fraction). - Paul Barry, Dec 02 2009
Let M be the infinite bidiagonal matrix with M(r,r)=1 in the main diagonal, M(r,r+1) = 2r-1, r >= 1, odd integers in the superdiagonal, and with the rest zeros. a(n) is the sum of first row terms of M^n. Example: a(4) = 188 = 1 + 4 + 18 + 60 + 105. - Gary W. Adamson, Jun 24 2011
a(n) -2*n*a(n-1) +2*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 09 2012
G.f.: 1/G(0) where G(k) = 1 - 2*x*(2*k+1) - 2*x^2*(k+1)*(2*k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 12 2013
G.f.: 1/(1-x)/Q(0), where Q(k) = 1 - x/(1-x)*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 19 2013
G.f.: conjecture: T(0)/(1-x), where T(k) = 1 - x*(k+1)/(x*(k+1) - (1-x)/T(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 13 2013
a(n) ~ 2^(n+1/2) * n^n / exp(n-1/2). - Vaclav Kotesovec, Feb 04 2014
G.f.: Sum_{k>=0} (2*k - 1)!!*x^k/(1 - x)^(k+1). - Ilya Gutkovskiy, Apr 12 2019