A084267 Partial sums of a binomial quotient.
1, 2, 4, 7, 11, 17, 24, 33, 44, 57, 72, 89, 109, 131, 156, 184, 215, 250, 288, 330, 376, 426, 480, 538, 601, 668, 740, 817, 899, 987, 1080, 1179, 1284, 1395, 1512, 1635, 1765, 1901, 2044, 2194, 2351, 2516, 2688, 2868, 3056, 3252, 3456, 3668, 3889, 4118, 4356
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-3,3,-2,3,-3,2,-3,3,-1).
Programs
-
Mathematica
Accumulate[Table[Floor[Binomial[n,4]/Binomial[n,2]],{n,6,70}]] (* Harvey P. Dale, Jul 19 2012 *)
Formula
a(n)=sum{k=0..n, floor(C(k+4, 4)/C(k+2, 2))}
G.f.: (x^4-x^3+x^2-x+1)/[(1-x)^4(1+x^2)(1+x+x^2)(1-x^2+x^4)].
Comments