A084405 Primes whose sum of factorials of digits is also prime.
2, 11, 13, 31, 101, 163, 313, 331, 431, 503, 613, 631, 1021, 1201, 1223, 1433, 1439, 1453, 1483, 1493, 1543, 1567, 1657, 1663, 1667, 1669, 1753, 1777, 1789, 1879, 1987, 1999, 2011, 2111, 2203, 2213, 2221, 3049, 3163, 3221, 3313, 3331, 3361, 3413, 3461, 3491
Offset: 1
Examples
a(10)=503, a prime, and 5! + 0! + 3! = 127, a prime.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A061602.
Programs
-
Mathematica
Select[Prime[Range[500]],PrimeQ[Total[IntegerDigits[#]!]]&] (* Harvey P. Dale, Mar 20 2016 *)
-
PARI
{digitsumfac(n)=local(s, d); s=0; while(n>0,d=divrem(n,10); n=d[1]; s=s+d[2]!); s} {facp(m)=local(ct,sr); ct=0; sr=0; forprime(p=2,m, if(isprime(digitsumfac(p)),ct++; print1(p," "); sr+=(1.0/p); )); print(); print("Found: "ct" primes < "m); print("Sum of reciprocals = "sr); }
-
Python
from sympy import isprime from math import factorial def f(n): return sum(factorial(int(d)) for d in str(n)) def ok(n): return isprime(n) and isprime(f(n)) print([k for k in range(3500) if ok(k)]) # Michael S. Branicky, Feb 11 2023