cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084405 Primes whose sum of factorials of digits is also prime.

Original entry on oeis.org

2, 11, 13, 31, 101, 163, 313, 331, 431, 503, 613, 631, 1021, 1201, 1223, 1433, 1439, 1453, 1483, 1493, 1543, 1567, 1657, 1663, 1667, 1669, 1753, 1777, 1789, 1879, 1987, 1999, 2011, 2111, 2203, 2213, 2221, 3049, 3163, 3221, 3313, 3331, 3361, 3413, 3461, 3491
Offset: 1

Views

Author

Jason Earls, Jun 24 2003

Keywords

Examples

			a(10)=503, a prime, and 5! + 0! + 3! = 127, a prime.
		

Crossrefs

Cf. A061602.

Programs

  • Mathematica
    Select[Prime[Range[500]],PrimeQ[Total[IntegerDigits[#]!]]&] (* Harvey P. Dale, Mar 20 2016 *)
  • PARI
    {digitsumfac(n)=local(s, d); s=0; while(n>0,d=divrem(n,10); n=d[1]; s=s+d[2]!); s}
    {facp(m)=local(ct,sr); ct=0; sr=0; forprime(p=2,m, if(isprime(digitsumfac(p)),ct++; print1(p," "); sr+=(1.0/p); )); print(); print("Found: "ct" primes < "m); print("Sum of reciprocals = "sr); }
    
  • Python
    from sympy import isprime
    from math import factorial
    def f(n): return sum(factorial(int(d)) for d in str(n))
    def ok(n): return isprime(n) and isprime(f(n))
    print([k for k in range(3500) if ok(k)]) # Michael S. Branicky, Feb 11 2023