cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084475 a(n) defines the first brilliant number, b_n, greater than 10^n. If n is odd or zero, then b_n is 10^n+a(n); and if n is a positive even number, then b_n is {10^(n/2)+a(n)}^2.

Original entry on oeis.org

3, 0, 1, 3, 1, 13, 9, 43, 7, 81, 3, 147, 3, 73, 19, 3, 7, 831, 7, 49, 19, 987, 3, 691, 39, 183, 37, 4153, 31, 279, 37, 667, 61, 709, 3, 277, 3, 1687, 51, 997, 39, 1207, 117, 91, 9, 1411, 117, 393, 7, 951, 13, 9793, 67, 2217, 103, 6229, 331, 2317, 319, 213, 57, 399, 33, 19
Offset: 0

Views

Author

Jason Earls, Jun 03 2003

Keywords

Examples

			a(5)=13 because 10^5+13 = 100013 = 103*971 and a(6)=9 because (10^3+9)^2 = 1009^2. For n>0, a(2n) = A033873(n).
		

Crossrefs

Programs

  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; LengthBase10[n_] := Floor[ Log[10, n] + 1]; f[n_] := Block[{k = 0}, If[ EvenQ[n] && n > 1, NextPrim[ 10^(n/2)]^2 - 10^(n/2), While[fi = FactorInteger[10^n + k]; Plus @@ Flatten[ Table[ # [[2]], {1}] & /@ fi] != 2 || Length[ Union[ LengthBase10 /@ Flatten[ Table[ # [[1]], {1}] & /@ fi]]] != 1, k++ ]; k]]; Table[ f[n], {n, 0, 63}]

Extensions

Edited and extended by Robert G. Wilson v, Jun 27 2003