A179975 Smallest k such that k*10^n is a sum of two successive primes.
5, 3, 1, 6, 6, 6, 14, 6, 9, 19, 21, 21, 42, 93, 21, 6, 11, 2, 12, 111, 37, 39, 63, 38, 42, 24, 15, 15, 60, 6, 39, 82, 47, 58, 337, 49, 72, 25, 34, 21, 6, 107, 128, 96, 20, 2, 63, 231, 70, 7, 62, 144, 28, 151, 157, 33, 98, 55, 134, 162, 87, 201, 124, 303, 64, 106, 130, 13, 43
Offset: 0
Keywords
Examples
a(0)=5 because 5=2+3 a(1)=3 because 30=13+17 a(2)=1 because 100=47+53 a(3)=6 because 6000=2999+3001.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..400.
- Dario Alejandro Alpern, Brilliant numbers
Crossrefs
Programs
-
Mathematica
Join[{5,3},Reap[Do[Do[n=10^m k; If[n==PreviousPrime[n/2]+NextPrime[n/2],Sow[k];Break[]],{k,2000}],{m,2,50}]][[2,1]]] f[n_] := Block[{k = 1, tn = 10^n}, While[h = k*tn/2; NextPrime[h, -1] + NextPrime@h != k*tn, k++ ]; k]; f[1] = 3; Array[f, 70, 0] (* Robert G. Wilson v, Aug 11 2010 *)
Extensions
More terms from Robert G. Wilson v, Aug 11 2010
Comments