cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084476 Least k such that 10^(2n-1)+k is a brilliant number.

Original entry on oeis.org

0, 3, 13, 43, 81, 147, 73, 3, 831, 49, 987, 691, 183, 4153, 279, 667, 709, 277, 1687, 997, 1207, 91, 1411, 393, 951, 9793, 2217, 6229, 2317, 213, 399, 19, 2317, 609, 2607, 11901, 10563, 5473, 3, 5923, 17527, 8569, 16701, 11989, 9757, 6489, 3489, 2899
Offset: 1

Views

Author

Robert G. Wilson v, Jun 27 2003

Keywords

Comments

Least brilliant number greater than 10^(2n) is {10^n+A033873(n)}^2. The web site also lists the two prime factors.

Examples

			a(3)=13 because 10^5+13 = 100013 = 103*971.
		

Crossrefs

Programs

  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; LengthBase10[n_] := Floor[ Log[10, n] + 1]; f[n_] := Block[{k = 0}, If[ EvenQ[n] && n > 1, NextPrim[ 10^(n/2)]^2 - 10^(n/2), While[fi = FactorInteger[10^n + k]; Plus @@ Flatten[ Table[ # [[2]], {1}] & /@ fi] != 2 || Length[ Union[ LengthBase10 /@ Flatten[ Table[ # [[1]], {1}] & /@ fi]]] != 1, k++ ]; k]]; Table[ f[2n + 1], {n, 1, 24}]