A084476 Least k such that 10^(2n-1)+k is a brilliant number.
0, 3, 13, 43, 81, 147, 73, 3, 831, 49, 987, 691, 183, 4153, 279, 667, 709, 277, 1687, 997, 1207, 91, 1411, 393, 951, 9793, 2217, 6229, 2317, 213, 399, 19, 2317, 609, 2607, 11901, 10563, 5473, 3, 5923, 17527, 8569, 16701, 11989, 9757, 6489, 3489, 2899
Offset: 1
Examples
a(3)=13 because 10^5+13 = 100013 = 103*971.
Links
- Harry Metrebian, Table of n, a(n) for n = 1..65
- Dario Alejandro Alpern, Brilliant numbers
Programs
-
Mathematica
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; LengthBase10[n_] := Floor[ Log[10, n] + 1]; f[n_] := Block[{k = 0}, If[ EvenQ[n] && n > 1, NextPrim[ 10^(n/2)]^2 - 10^(n/2), While[fi = FactorInteger[10^n + k]; Plus @@ Flatten[ Table[ # [[2]], {1}] & /@ fi] != 2 || Length[ Union[ LengthBase10 /@ Flatten[ Table[ # [[1]], {1}] & /@ fi]]] != 1, k++ ]; k]]; Table[ f[2n + 1], {n, 1, 24}]
Comments