A084478 Number of tilings of a 5 X 3n rectangle with right trominoes.
1, 0, 72, 384, 8544, 76800, 1168512, 12785664, 170678784, 2014648320, 25633231872, 311423852544, 3892030055424, 47803588208640, 593425578949632, 7318730222874624, 90624271197041664, 1119402280975349760, 13847850677651745792, 171150049715628539904
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..900
- D. Merlini, R. Sprugnoli, M. C. Verri, Strip tiling and regular grammars, Theo. Comp. Sci. 242 (1-2) (2000) 109-124, Proof of Theorem 4.2 (typo t^5 in the denominator of g.f. ought be t^6)
- C. Moore, Some Polyomino Tilings of the Plane, arXiv:math/9905012 [math.CO], 1999.
- Index entries for linear recurrences with constant coefficients, signature (2,103,280,380).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{2, 103, 280, 380}, {72, 384, 8544, 76800}, 20] (* Jean-François Alcover, Jan 07 2019 *)
-
PARI
Vec(24*x^2*(3 + 10*x + 15*x^2) / (1 - 2*x - 103*x^2 - 280*x^3 - 380*x^4) + O(x^30)) \\ Colin Barker, Mar 27 2017
Formula
G.f.: (1 - 2*z - 31*z^2 - 40*z^3 - 20*z^4) / (1 - 2*z - 103*z^2 - 280*z^3 - 380*z^4).
a(n) = 2*a(n-1) + 103*a(n-2) + 280*a(n-3) + 380*a(n-4) for n > 4. - Colin Barker, Mar 27 2017
Extensions
a(0) and a(1) prepended by Alois P. Heinz, Feb 21 2022
Comments