A084598 a(1) = 2, a(2) = 3; for n >= 2, a(n+1) is smallest prime factor of (Product_{k = 1..n} a(k)) - 1.
2, 3, 5, 29, 11, 7, 13, 37, 32222189, 131, 136013303998782209, 31, 197, 19, 157, 17, 8609, 1831129, 35977, 508326079288931, 487, 10253, 1390043, 18122659735201507243, 25319167, 9512386441, 85577, 1031, 3650460767, 107
Offset: 1
Keywords
Examples
a(4) = 29 since 2*3*5 = 30 and 29 is the smallest prime factor of 30-1.
Links
- Sean A. Irvine added terms 54 through 61, May 21 2006, giving Table of n, a(n) for n = 1..61
- Dario Alpern, Factorization using the Elliptic Curve Method
Programs
-
Mathematica
a={2,3}; q=2; For[n=3,n<=19,n++, q=q*Last[a]; AppendTo[a,Min[FactorInteger[q-1][[All,1]]]]; ]; a (* Robert Price, Jul 17 2015 *)
Extensions
More terms from Hugo Pfoertner, May 31 2003, using Dario Alpern's ECM
Comments