cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084625 Binomial transform of A084624.

Original entry on oeis.org

1, 3, 8, 21, 55, 143, 366, 919, 2265, 5491, 13125, 31000, 72485, 168042, 386709, 884161, 2009742, 4543830, 10222264, 22891099, 51041560, 113359224, 250839510, 553173006, 1216070081, 2665518207, 5826533103, 12703217438, 27628250142
Offset: 0

Views

Author

Paul Barry, Jun 01 2003

Keywords

Crossrefs

Programs

  • Magma
    A084625:= func< n | (&+[Binomial(n,j)*Floor(Binomial(j+5,3)/10): j in [0..n]]) >;
    [A084625(n): n in [0..50]]; // G. C. Greubel, Mar 24 2023
    
  • Mathematica
    a[n_]:= a[n]= 2^n +Sum[Binomial[n,j]*Floor[j*(j^2+12*j+47)/60], {j,0, n}];
    Table[a[n], {n,0,50}] (* G. C. Greubel, Mar 24 2023 *)
  • SageMath
    def A084625(n): return sum(binomial(n,j)*(binomial(j+5,3)//10) for j in range(n+1))
    [A084625(n) for n in range(51)] # G. C. Greubel, Mar 24 2023

Formula

a(n) = Sum_{k=0..n} C(n, k)*floor(C(k+5, 5)/C(k+2, 2)).
a(n) = 2^n + Sum_{k=0..n} binomial(n,k)*floor(k*(k^2 +12*k +47)/60). - G. C. Greubel, Mar 24 2023