A084625 Binomial transform of A084624.
1, 3, 8, 21, 55, 143, 366, 919, 2265, 5491, 13125, 31000, 72485, 168042, 386709, 884161, 2009742, 4543830, 10222264, 22891099, 51041560, 113359224, 250839510, 553173006, 1216070081, 2665518207, 5826533103, 12703217438, 27628250142
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
A084625:= func< n | (&+[Binomial(n,j)*Floor(Binomial(j+5,3)/10): j in [0..n]]) >; [A084625(n): n in [0..50]]; // G. C. Greubel, Mar 24 2023
-
Mathematica
a[n_]:= a[n]= 2^n +Sum[Binomial[n,j]*Floor[j*(j^2+12*j+47)/60], {j,0, n}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Mar 24 2023 *)
-
SageMath
def A084625(n): return sum(binomial(n,j)*(binomial(j+5,3)//10) for j in range(n+1)) [A084625(n) for n in range(51)] # G. C. Greubel, Mar 24 2023
Formula
a(n) = Sum_{k=0..n} C(n, k)*floor(C(k+5, 5)/C(k+2, 2)).
a(n) = 2^n + Sum_{k=0..n} binomial(n,k)*floor(k*(k^2 +12*k +47)/60). - G. C. Greubel, Mar 24 2023