A084635 Binomial transform of 1,0,1,0,1,1,1,...
1, 1, 2, 4, 8, 17, 38, 86, 192, 419, 894, 1872, 3864, 7893, 16006, 32298, 64960, 130375, 261310, 523300, 1047416, 2095801, 4192742, 8386814, 16775168, 33552107, 67106238, 134214776, 268432152, 536867229, 1073737734, 2147479122, 4294962304, 8589929103
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-14,16,-9,2).
Programs
-
Magma
[2^n -n*(n^2-3*n+8)/6: n in [0..50]]; // G. C. Greubel, Mar 19 2023
-
Mathematica
Table[2^n -n -Binomial[n,3], {n,0,50}] (* G. C. Greubel, Mar 19 2023 *)
-
SageMath
[2^n -n*(n^2-3*n+8)/6 for n in range(51)] # G. C. Greubel, Mar 19 2023
Formula
a(n) = 2^n - n*(n^2 - 3*n + 8)/6.
a(n) = 1 + C(n, 2) + Sum_{k=4..n} C(n, k).
O.g.f.: (1-5*x+10*x^2-10*x^3+5*x^4)/((1-x)^4*(1-2*x)). - R. J. Mathar, Apr 02 2008
a(n) = A000225(n) - (n-1) - binomial(n, 3). - G. C. Greubel, Mar 19 2023
Comments