cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084635 Binomial transform of 1,0,1,0,1,1,1,...

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 38, 86, 192, 419, 894, 1872, 3864, 7893, 16006, 32298, 64960, 130375, 261310, 523300, 1047416, 2095801, 4192742, 8386814, 16775168, 33552107, 67106238, 134214776, 268432152, 536867229, 1073737734, 2147479122, 4294962304, 8589929103
Offset: 0

Views

Author

Paul Barry, Jun 06 2003

Keywords

Comments

Without its first term, it is the binomial transform of 1,1,1,1,2,2,2,2,2...

Crossrefs

Programs

  • Magma
    [2^n -n*(n^2-3*n+8)/6: n in [0..50]]; // G. C. Greubel, Mar 19 2023
    
  • Mathematica
    Table[2^n -n -Binomial[n,3], {n,0,50}] (* G. C. Greubel, Mar 19 2023 *)
  • SageMath
    [2^n -n*(n^2-3*n+8)/6 for n in range(51)] # G. C. Greubel, Mar 19 2023

Formula

a(n) = 2^n - n*(n^2 - 3*n + 8)/6.
a(n) = 1 + C(n, 2) + Sum_{k=4..n} C(n, k).
O.g.f.: (1-5*x+10*x^2-10*x^3+5*x^4)/((1-x)^4*(1-2*x)). - R. J. Mathar, Apr 02 2008
a(n) = A000225(n) - (n-1) - binomial(n, 3). - G. C. Greubel, Mar 19 2023