A084636 Binomial transform of (1,0,1,0,1,0,2,0,2,0,2,0,...).
1, 1, 2, 4, 8, 16, 33, 71, 157, 349, 768, 1662, 3534, 7398, 15291, 31297, 63595, 128555, 258930, 520240, 1043540, 2090956, 4186757, 8379499, 16766313, 33541481, 67093588, 134199826, 268414602, 536846754, 1073713983, 2147451717, 4294930839, 8589893143
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-20,30,-25,11,-2).
Programs
-
Magma
[(2^n-1) -(1/24)*n*(n^3-6*n^2+23*n-18) +0^n: n in [0..50]]; // G. C. Greubel, Mar 19 2023
-
Mathematica
Table[Boole[n==0] +(2^n-1) -(1/24)*n*(n^3-6*n^2+23*n-18), {n,0,50}] (* G. C. Greubel, Mar 19 2023 *)
-
SageMath
[(2^n-1) -(1/24)*n*(n^3-6*n^2+23*n-18) +0^n for n in range(51)] # G. C. Greubel, Mar 19 2023
Formula
a(n) = Sum_{k=0..2} C(n, 2*k) + 2*Sum_{k=3..floor(n/2)} C(n, 2*k).
a(n) = (n^4 - 6*n^3 + 23*n^2 - 18*n + 24)/24 + 2*Sum_{k=3..floor(n/2)} C(n, 2*k).
O.g.f.: (1-2*x+2*x^2)*(1-4*x+5*x^2-2*x^3+x^4)/((1-x)^5*(1-2*x)). - R. J. Mathar, Apr 07 2008
a(n) = A000225(n) - (1/24)*n*(n-1)*(n^2 - 5*n + 18) + [n=0]. - G. C. Greubel, Mar 19 2023
Comments