cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084637 Binomial transform of (1,0,1,0,1,0,1,1,1,1,1,...).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 65, 136, 293, 642, 1410, 3072, 6606, 14004, 29295, 60592, 124187, 252742, 511672, 1031912, 2075452, 4166408, 8353165, 16732664, 33498977, 67040458, 134134046, 268333872, 536748474, 1073595228, 2147309211, 4294760928, 8589691767
Offset: 0

Views

Author

Paul Barry, Jun 06 2003

Keywords

Comments

The sequence starting 1,2,4,... is the binomial transform of (1, 1, 1, 1, 1, 1, 2, 2, 2, ...) with A035038(n) = Sum_{k=0..5} C(n,k) + 2*Sum_{k=6..n} C(n,k) = 2^n - (n^5 - 5*n^4 + 25*n^3 + 5*n^2 + 94*n + 120)/120. This gives the partial sums of A084636.

Crossrefs

Programs

  • Magma
    [2^n -n*(n^4-10*n^3+55*n^2-110*n+184)/120: n in [0..50]]; // G. C. Greubel, Mar 19 2023
    
  • Mathematica
    Table[2^n -n*(n^4-10*n^3+55*n^2-110*n+184)/120, {n,0,50}] (* G. C. Greubel, Mar 19 2023 *)
  • PARI
    Vec((1-7*x+21*x^2-35*x^3+35*x^4-21*x^5+7*x^6)/((1-x)^6*(1-2*x)) + O(x^50)) \\ Colin Barker, Mar 17 2016
    
  • SageMath
    [2^n -n*(n^4-10*n^3+55*n^2-110*n+184)/120 for n in range(51)] # G. C. Greubel, Mar 19 2023

Formula

a(n) = Sum_{k=0..2} C(n, 2*k) + Sum_{k=6..n} C(n, k).
a(n) = 2^n - n*(n^4 - 10*n^3 + 55*n^2 - 110*n + 184)/120.
G.f.: (1-7*x+21*x^2-35*x^3+35*x^4-21*x^5+7*x^6) / ((1-x)^6*(1-2*x)). - Colin Barker, Mar 17 2016