cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084638 Binomial transform of (1,0,1,0,1,0,1,0,2,0,2,0,2,....).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 129, 265, 558, 1200, 2610, 5682, 12288, 26292, 55587, 116179, 240366, 493108, 1004780, 2036692, 4112144, 8278552, 16631717, 33364381, 66863358, 133903816, 268037862, 536371734, 1073120208, 2146715436, 4294024647, 8588785575
Offset: 0

Views

Author

Paul Barry, Jun 06 2003

Keywords

Comments

The sequence starting 1,2,4,... is the binomial transform of (1,1,1,1,1,1,1,2,2...) with a(n) = Sum_{k=0..6} C(n,k) + 2*Sum_{k=7..n} C(n,k) = 2^(n+1) - A008859(n). This gives the partial sums of A084637.

Crossrefs

Programs

  • Magma
    [2^n -4 -(n+1)*(n^5-16*n^4+131*n^3-536*n^2+1500*n-2160)/720 + 0^n: n in [0..50]]; // G. C. Greubel, Mar 20 2023
    
  • Mathematica
    Table[2^n -4 -(1/6!)*(n+1)*(n^5-16*n^4+131*n^3-536*n^2+1500*n-2160) + Boole[n==0], {n,0,50}] (* G. C. Greubel, Mar 20 2023 *)
  • PARI
    Vec((1-8*x+28*x^2-56*x^3+70*x^4-56*x^5+28*x^6-8*x^7+2*x^8)/((1-x)^7*(1-2*x)) + O(x^50)) \\ Colin Barker, Mar 17 2016
    
  • SageMath
    [2^n -4 -(n+1)*(n^5-16*n^4+131*n^3-536*n^2+1500*n-2160)/720 + 0^n for n in range(51)] # G. C. Greubel, Mar 20 2023

Formula

a(n) = Sum_{k=0..3, C(n, 2*k)} + 2*Sum_{k=4..floor(n/2), C(n, 2*k)}.
a(n) = (n^6-15*n^5+115*n^4-405*n^3+964*n^2-660*n+720)/720 + 2*Sum_{k=4..floor(n/2), C(n, 2k)}.
G.f.: (1-8*x+28*x^2-56*x^3+70*x^4-56*x^5+28*x^6-8*x^7+2*x^8) / ((1-x)^7*(1-2*x)). - Colin Barker, Mar 17 2016