cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084642 A Jacobsthal ratio.

Original entry on oeis.org

1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1
Offset: 0

Views

Author

Paul Barry, Jun 08 2003

Keywords

Comments

The Jacobsthal recurrence means that A001045(n+1)/A001045(n) = 1 + 2/(A001045(n)/A001045(n-1)). The sequence of these fractions alternates after the first terms values just above 2 and just below 2, because the mapping x -> 1+2/x is concave in the neighborhood of x=2, where x=2 is an attractor. As a consequence, this sequence here iterates like A040001 or A000034 after a few terms. - R. J. Mathar, Sep 17 2008
Decimal expansion of 433/3300. - Elmo R. Oliveira, May 06 2024

Crossrefs

Programs

  • Magma
    [1,3] cat [1+ (n mod 2): n in [2..120]]; // G. C. Greubel, Mar 20 2023
    
  • Mathematica
    Table[(3-(-1)^n)/2 +Boole[n==1], {n,0,120}] (* G. C. Greubel, Mar 20 2023 *)
  • SageMath
    [1 + (n%2) + int(n==1) for n in range(121)] # G. C. Greubel, Mar 20 2023

Formula

a(n) = floor(A001045(n+2)/A001045(n+1)).
a(n) = floor((2^(n+2) - (-1)^(n+2))/(2^(n+1) - (-1)^(n+1))).
From G. C. Greubel, Mar 20 2023: (Start)
a(n) = A000034(n) + [n=1].
a(n) = a(n-2), for n > 3, with a(0) = 1, a(1) = 3, a(2) = 1, a(3) = 2.
G.f.: (1 + 3*x - x^3)/(1-x^2).
E.g.f.: (1/2)*(2*x + 3*exp(x) - exp(-x)). (End)