A084820 Numbers n such that n, sigma(n) and phi(n) form an integer triangle, where sigma=A000203 is the divisor sum and phi=A000010 the totient.
1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 137
Offset: 1
Keywords
Examples
n=5, a(5)=9: phi(9)=6, sigma(9)=13: (6,9,13)=(A070080(176), A070081(176), A070082(176)).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Divisor Function
- Eric Weisstein's World of Mathematics, Totient Function
Crossrefs
Cf. A046022.
Programs
-
Mathematica
Select[Range[1, 140, 2], DivisorSigma[1, #] < EulerPhi[#] + # &] (* Amiram Eldar, Sep 12 2019 *)
-
PARI
is(n)=eulerphi(n)+n>sigma(n) \\ Charles R Greathouse IV, Feb 19 2013
Comments