A084831 Numbers n such that sum of odd divisors and sum of even divisors are both palindromic.
1, 2, 3, 4, 5, 6, 7, 43, 81, 86, 162, 201, 205, 211, 221, 241, 251, 271, 281, 325, 333, 344, 365, 422, 433, 443, 463, 482, 489, 519, 559, 633, 650, 685, 730, 793, 803, 827, 857, 866, 877, 886, 887, 1419, 1505, 1841, 2021, 2111, 2221, 2305, 2441, 2551, 2561, 2611
Offset: 1
Examples
a(11)=162 because sum of even divisors is 242 and sum of odd divisors is 121.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
sodQ[n_]:=Module[{dn=Divisors[n],o,e},o=IntegerDigits[Total[Select[ dn,OddQ]]]; e=IntegerDigits[Total[Select[dn,EvenQ]]]; o== Reverse[o] && e==Reverse[e]]; Select[Range[3000],sodQ] (* Harvey P. Dale, Feb 27 2013 *)
Comments