A084858 Binomial transform of A001651.
1, 3, 9, 24, 60, 144, 336, 768, 1728, 3840, 8448, 18432, 39936, 86016, 184320, 393216, 835584, 1769472, 3735552, 7864320, 16515072, 34603008, 72351744, 150994944, 314572800, 654311424, 1358954496, 2818572288, 5838471168, 12079595520
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Programs
-
Magma
I:=[1, 3, 9]; [n le 3 select I[n] else 4*Self(n-1)-4*Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jun 24 2012
-
Mathematica
CoefficientList[Series[(x^2-x+1)/(1-2x)^2,{x,0,40}],x] (* Vincenzo Librandi, Jun 24 2012 *)
-
PARI
a(n)=3*(0^n/3+2^n+n<
Charles R Greathouse IV, Nov 11 2011
Formula
G.f.: (x^2 - x + 1)/(1-2*x)^2.
a(n) = 3*(0^n/3 + 2^n + n*2^n)/4.
For n > 1: a(n) = 2*a(n-1) + 3*2^(n-2). - Philippe Deléham, Nov 10 2011
a(n) = 4*a(n-1) - 4*a(n-2). - Vincenzo Librandi, Jun 24 2012
Comments