A084867 Symmetric square table, read by antidiagonals, such that antidiagonal sums form the first row shifted left: T(0,0)=1, T(0,k) = Sum_{m=0..k-1} T(m,k-1-m) when k > 0; and T(n,k) = T(n-1,k) + T(n,k-1) when n > 0, k > 0.
1, 1, 1, 2, 2, 2, 6, 4, 4, 6, 20, 10, 8, 10, 20, 68, 30, 18, 18, 30, 68, 232, 98, 48, 36, 48, 98, 232, 792, 330, 146, 84, 84, 146, 330, 792, 2704, 1122, 476, 230, 168, 230, 476, 1122, 2704, 9232, 3826, 1598, 706, 398, 398, 706, 1598, 3826, 9232, 31520, 13058, 5424
Offset: 0
Examples
Table begins: 1, 1, 2, 6, 20, 68, 232, 792, ... 1, 2, 4, 10, 30, 98, 330, 1122, ... 2, 4, 8, 18, 48, 146, 476, 1598, ... 6, 10, 18, 36, 84, 230, 706, 2304, ... 20, 30, 48, 84, 168, 398, 1104, 3408, ... 68, 98, 146, 230, 398, 796, 1900, 5308, ... 232, 330, 476, 706, 1104, 1900, 3800, 9108, ... 792, 1122, 1598, 2304, 3408, 5308, 9108, 18216, ... 2704, 3826, 5424, 7728, 11136, 16444, 25552, 43768, ... 9232, 13058, 18482, 26210, 37346, 53790, 79342, 123110, ...
Formula
T(0,0)=1, T(0,1)=1, T(0,n) = 4*T(0,n-1) - 2*T(0,n-2) when n >= 2.
Comments