cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084890 Triangular array, read by rows: T(n,k) = arithmetic derivative of n*k, 1<=k<=n.

Original entry on oeis.org

0, 1, 4, 1, 5, 6, 4, 12, 16, 32, 1, 7, 8, 24, 10, 5, 16, 21, 44, 31, 60, 1, 9, 10, 32, 12, 41, 14, 12, 32, 44, 80, 68, 112, 92, 192, 6, 21, 27, 60, 39, 81, 51, 156, 108, 7, 24, 31, 68, 45, 92, 59, 176, 123, 140, 1, 13, 14, 48, 16, 61, 18, 140, 75, 87, 22, 16, 44, 60, 112, 92, 156, 124, 272, 216, 244, 188, 384
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2003

Keywords

Examples

			................. 0
.............. 1 ... 4
........... 1 ... 5 ... 6
........ 4 .. 12 .. 16 .. 32
..... 1 ... 7 ... 8 .. 24 .. 10
.. 5 .. 16 .. 21 .. 44 .. 31 .. 60
1 ... 9 .. 10 .. 32 .. 12 .. 41 .. 14.
		

Crossrefs

Programs

  • Mathematica
    ader[n_] := ader[n] =Switch[n, 0 | 1, 0, _, If[PrimeQ[n], 1, Sum[Module[{p, e}, {p, e} = pe; n e/p], {pe, FactorInteger[n]}]]];
    T[n_, k_] := ader[n k];
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 21 2021 *)

Formula

T(n,k) = A003415(n*k) = n*A003415(k)+k*A003415(n), 1<=k<=n.
T(n,1) = A003415(n); n>1.
T(n,2) = A068719(n).
T(n,n) = A068720(n).