A084915 a(n) = (n!)^2*n.
0, 1, 8, 108, 2304, 72000, 3110400, 177811200, 13005619200, 1185137049600, 131681894400000, 17526860144640000, 2753310393630720000, 504085244567224320000
Offset: 0
Keywords
Examples
a(3) = 3!^2*3 = 36*3 = 108.
Programs
-
PARI
for(n=1,50,print1(n!^2*n","))
Formula
a(n) = n!*(n+1)! - n!^2.
a(n) = det(PS(i+2,j+1), 1 <= i,j <= n-1), where PS(n,k) are Legendre-Stirling numbers of the second kind (A071951) and n > 0. [Mircea Merca, Apr 06 2013]
Comments