A084941 Octagorials: n-th polygorial for k=8.
1, 1, 8, 168, 6720, 436800, 41932800, 5577062400, 981562982400, 220851671040000, 61838467891200000, 21086917550899200000, 8603462360766873600000, 4138265395528866201600000, 2317428621496165072896000000, 1494741460865026472017920000000, 1100129715196659483405189120000000
Offset: 0
Links
- Daniel Dockery, Polygorials, Special "Factorials" of Polygonal Numbers, preprint, 2003.
Crossrefs
Programs
-
Maple
a := n->n!/2^n*product(6*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
Mathematica
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[8, #] &, 16, 0] (* Robert G. Wilson v, Dec 26 2016 *)
-
PARI
a(n) = n! / 2^n * prod(i=0, n-1, 6*i+2) \\ Felix Fröhlich, Dec 13 2016
Formula
a(n) = polygorial(n, 8) = (A000142(n)/A000079(n))*A047657(n) = (n!/2^n)*Product_{i=0..n-1} (6*i+2) = (n!/2^n)*6^n*Pochhammer(1/3, n) = (n!/2)*3^n*sqrt(3)*Gamma(n+1/3)*Gamma(2/3)/Pi.
D-finite with recurrence a(n) = n*(3*n-2)*a(n-1). - R. J. Mathar, Mar 12 2019
a(n) ~ 2 * 3^n * n^(2*n + 1/3) * Pi /(Gamma(1/3) * exp(2*n)). - Amiram Eldar, Aug 28 2025