cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085012 For p = prime(n), a(n) is the smallest prime q such that pq is a base-2 pseudoprime; that is, 2^(pq-1) = 1 mod pq; a(n) is 0 if no such prime exists.

Original entry on oeis.org

0, 0, 0, 31, 0, 257, 73, 89, 113, 11, 73, 61681, 127, 178481, 157, 233, 1321, 20857, 281, 19, 2731, 13367, 23, 193, 601, 307, 6361, 37, 29, 43, 2731, 953, 168749965921, 593, 31, 53, 2593, 499, 101653, 62020897, 54001, 2281, 97, 19707683773, 5347, 29191
Offset: 2

Views

Author

T. D. Noe, Jun 28 2003

Keywords

Comments

Using a construction in Erdős's paper, it can be shown that every odd prime except 3, 5, 7 and 13 is a factor of some 2-factor pseudoprime. Note that the cofactor q can be very large; for p=317, the smallest is 381364611866507317969. Using a theorem of Lehmer, it can be shown that the possible values of q are among the prime factors of 2^(p-1)-1. The sequence A085014 gives the number of 2-factor pseudoprimes that have prime(n) as a factor.
Sequence A086019 gives the largest prime q such that q*prime(n) is a pseudoprime.

Examples

			a(11) = 11 because prime(11) = 31 and 11 is the smallest factor of 2^30-1 that yields a pseudoprime when multiplied by 31.
		

References

  • Paulo Ribenboim, The New Book of Prime Number Records, Springer, 1996, p. 105-112.

Crossrefs

Cf. A001567 (base-2 pseudoprimes), A085014, A086019, A180471.

Programs

  • Mathematica
    Table[p=Prime[n]; q=Transpose[FactorInteger[2^(p-1)-1]][[1]]; i=1; While[i<=Length[q] && (PowerMod[2, p*q[[i]]-1, p*q[[i]]]>1), i++ ]; If[i>Length[q], 0, q[[i]]], {n, 2, 56}]