A085012 For p = prime(n), a(n) is the smallest prime q such that pq is a base-2 pseudoprime; that is, 2^(pq-1) = 1 mod pq; a(n) is 0 if no such prime exists.
0, 0, 0, 31, 0, 257, 73, 89, 113, 11, 73, 61681, 127, 178481, 157, 233, 1321, 20857, 281, 19, 2731, 13367, 23, 193, 601, 307, 6361, 37, 29, 43, 2731, 953, 168749965921, 593, 31, 53, 2593, 499, 101653, 62020897, 54001, 2281, 97, 19707683773, 5347, 29191
Offset: 2
Keywords
Examples
a(11) = 11 because prime(11) = 31 and 11 is the smallest factor of 2^30-1 that yields a pseudoprime when multiplied by 31.
References
- Paulo Ribenboim, The New Book of Prime Number Records, Springer, 1996, p. 105-112.
Links
- Amiram Eldar, Table of n, a(n) for n = 2..619
- Amiram Eldar, Table of n, a(n) for n = 2..1000 with 2 missing terms (marked with value 0)
- Paul Erdős, On the converse of Fermat's theorem, Amer. Math. Monthly 56 (1949), p. 623-624.
- D. H. Lehmer, On the converse of Fermat's theorem, Amer. Math. Monthly 43 (1936), p. 347-354.
- Index entries for sequences related to pseudoprimes
Programs
-
Mathematica
Table[p=Prime[n]; q=Transpose[FactorInteger[2^(p-1)-1]][[1]]; i=1; While[i<=Length[q] && (PowerMod[2, p*q[[i]]-1, p*q[[i]]]>1), i++ ]; If[i>Length[q], 0, q[[i]]], {n, 2, 56}]
Comments