A085014 For p = prime(n), a(n) is the number of primes q such that pq is a base-2 pseudoprime; that is, 2^(pq-1) = 1 mod pq.
0, 0, 0, 1, 0, 1, 1, 2, 1, 3, 2, 1, 3, 2, 2, 4, 1, 2, 3, 5, 4, 3, 6, 4, 4, 6, 4, 5, 4, 6, 5, 4, 2, 5, 8, 7, 5, 6, 3, 3, 3, 4, 5, 4, 4, 5, 9, 8, 7, 8, 5, 8, 7, 8, 4, 6, 6, 7, 7, 9, 6, 11, 7, 8, 2, 7, 12, 8, 6, 8, 4, 5, 5, 6, 5, 11, 10, 9, 11, 5, 8, 9, 12, 9, 4, 7, 13, 8, 5
Offset: 2
Keywords
Examples
a(11) = 3 because prime(11) = 31 and 2^30-1 has 3 prime factors (11, 151, 331) that yield pseudoprimes when multiplied by 31.
References
- Paulo Ribenboim, The New Book of Prime Number Records, Springer, 1996, p. 105-112.
Links
- Amiram Eldar, Table of n, a(n) for n = 2..337
- Paul Erdős, On the converse of Fermat's theorem, Amer. Math. Monthly 56 (1949), p. 623-624.
- D. H. Lehmer, On the converse of Fermat's theorem, Amer. Math. Monthly 43 (1936), p. 347-354.
- Index entries for sequences related to pseudoprimes
Programs
-
Mathematica
Table[p=Prime[n]; q=Transpose[FactorInteger[2^(p-1)-1]][[1]]; cnt=0; Do[If[PowerMod[2, p*q[[i]]-1, p*q[[i]]]==1, cnt++ ], {i, Length[q]}]; cnt, {n, 2, 50}]
Formula
a(n) < 0.7 * p, where p is the n-th prime. - Charles R Greathouse IV, Apr 12 2012
Comments