A085074 Smallest number a(n) == 1 (mod n) such that the prime signature of n and a(n) is the same.
3, 7, 9, 11, 55, 29, 4913, 289, 21, 23, 325, 53, 15, 46, 81, 103, 325, 191, 261, 22, 111, 47, 3625, 10201, 183, 6859, 477, 59, 1771, 311, 8587340257, 34, 35, 106, 1225, 149, 39, 118, 1161, 83, 715, 173, 45, 316, 93, 283, 60625, 9409, 801, 205, 261, 107, 11125
Offset: 2
Keywords
Examples
a(6) = 55 = 9*6 +1 = 11*5 and 6 = 2*3 are both of prime signature p*q, where p and q are primes.
Links
- Robert Israel, Table of n, a(n) for n = 2..719
Crossrefs
Second column of A113031.
Programs
-
Maple
f:= proc(n) local k, s, p, best, q, r, x; s:= ps(n); if nops(s) = 1 then s:= s[1]; p:= 1; do p:= nextprime(p); if p^s mod n = 1 then return p^s fi od elif nops(s) = 2 then p:= 1; best:= infinity; do p:=nextprime(p); if n mod p = 0 then next fi; if 2^s[1]*p^s[2] > best then return best fi; if [msolve(x^s[1]*p^s[2]=1, n)]=[] then next fi; q:= 1; do q:= nextprime(q); if q = p or n mod q = 0 then next fi; r:= q^s[1]*p^s[2]; if r > best then break fi; if r mod n = 1 then best:= r fi; od od fi; for k from 1 by n do if ps(k) = s then return k fi od end proc: map(f, [$1..100]); # Robert Israel, Mar 23 2021
-
PARI
a(n) = my(ps = vecsort(factor(n)[, 2]), k = 1); while (vecsort(factor(k*n+1)[, 2]) != ps, k++); return (k*n+1); \\ Michel Marcus, Sep 15 2013; corrected Jun 14 2022
Extensions
More terms from David Wasserman, Jan 12 2005