cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085122 a(n) = PrimePi(sigma(n)-phi(n)) - (PrimePi(sigma(n)) - PrimePi(phi(n))), where PrimePi = A000720, sigma = A000203 and phi = A000010.

Original entry on oeis.org

0, -1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 2, 2, 0, 2, 2, 2, 3, 3, 0, 2, 0, 3, 2, 2, 3, 3, 0, 3, 4, 3, 0, 4, 0, 3, 4, 3, 0, 4, 3, 5, 3, 5, 0, 3, 3, 3, 3, 3, 0, 3, 0, 4, 3, 4, 3, 4, 0, 5, 5, 5, 0, 4, 0, 2, 5, 4, 4, 4, 0, 5, 5, 5, 0, 7, 4, 5, 4, 5, 0, 4, 3, 5, 5, 5, 5, 4, 0, 5, 5, 5, 0, 6, 0, 6, 6, 7, 0, 5, 0, 5, 6, 8, 0, 5, 5, 6, 7, 5, 5, 5, 6, 5, 6, 7, 5, 5, 0, 7
Offset: 1

Views

Author

Labos Elemer, Jul 11 2003

Keywords

Comments

Scatterplot of this sequence shows interesting strata. - Antti Karttunen, Jan 22 2020

Crossrefs

Programs

  • Mathematica
    t=Table[PrimePi[DivisorSigma[1, w]-EulerPhi[w]]- (PrimePi[DivisorSigma[1, w]]-PrimePi[EulerPhi[w]]), {w, 1, 10000}]
  • PARI
    A085122(n) = (primepi(sigma(n)-eulerphi(n)) - (primepi(sigma(n))-primepi(eulerphi(n)))); \\ Antti Karttunen, Jan 22 2020

Formula

a(n) = A000720(A051612(n)) - (A070803(n) - A070804(n)) = A000720(A051612(n)) - A085343(n). - Antti Karttunen, Jan 22 2020

Extensions

Name edited by Antti Karttunen, Jan 22 2020