cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085215 Square array A(x,y) = the number whose factorial expansion A007623 is that of x and y concatenated; zero expanded as empty string; read by ascending antidiagonals: A(0,0), A(1,0), A(0,1), A(2,0), A(1,1), A(0,2), ...

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 3, 7, 8, 3, 4, 9, 26, 9, 4, 5, 13, 32, 27, 10, 5, 6, 15, 50, 33, 28, 11, 6, 7, 25, 56, 51, 34, 29, 30, 7, 8, 27, 122, 57, 52, 35, 126, 31, 8, 9, 31, 128, 123, 58, 53, 150, 127, 32, 9, 10, 33, 146, 129, 124, 59, 246, 151, 128, 33, 10, 11, 37, 152, 147, 130, 125, 270, 247, 152, 129, 34, 11
Offset: 0

Views

Author

Antti Karttunen, Jun 23 2003

Keywords

Examples

			From _M. F. Hasler_, Nov 27 2018: (Start)
The array starts:
   0   1   2   3   4   5  6 ...
   1   3   8   9  10  11 30 ...
   2   7  26  27  28  29 ...
   3   9  32  33  34  ...
   4  13  50  51  ...
  (...)  (End)
A(4,3) = 51 which has a factorial expansion '2011' (2*24+0*6+1*2+1*1), a concatenation of factorial expansions of 4, '20' and of 3, '11'. Similarly, A(3,4) = 34 which has a factorial expansion '1120' (1*24+1*6+2*2+0*1). See A085217 for the corresponding factorial expansions.
		

Crossrefs

Transpose: A085216. Variant: A085219. Can be used to compute A085201. Cf. A000142, A007623, A084558, A025581, A002262.

Programs

  • PARI
    A085215(x,y)=A322001(eval(Str(A007623(x),A007623(y)))) \\ M. F. Hasler, Nov 27 2018. N.B. This has the same caveat as Hasler's formula. See below for program that is correct for all x, y >= 0. - Antti Karttunen, Mar 24 2025
    
  • PARI
    up_to = 78;
    A085215sq(x,y) = { my(i=2,j=2,z=0,f=1); while(y>0, z += (y%i)*f; f *= i; y \= i; i++); while(x>0, z += (x%j)*f; f *= i; x \= j; i++; j++); (z); };
    A085215list(up_to) = { my(v = vector(up_to), i=0); for(a=0, oo, for(col=0, a, i++; if(i > up_to, return(v)); v[i] = A085215sq(a-col, col))); (v); };
    v085215 = A085215list(up_to);
    A085215(n) = v085215[1+n]; \\ Antti Karttunen, Mar 24 2025

Formula

A(x,y) = A322001(concat(A007623(x), A007623(y))), where A322001 is a left inverse of A007623. - M. F. Hasler, Nov 27 2018. Note: this formula is valid only with x and y such that A322001(A007623(x)) = x and A322001(A007623(y)) = y, i.e., at least for all x,y <= 36287999. See N. J. A. Sloane's Jun 04 2012 comment in A007623. - Antti Karttunen, Feb 23 2025

Extensions

More terms added by Antti Karttunen, Mar 24 2025