cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085245 Least k such that k*2^n + 1 is a semiprime.

Original entry on oeis.org

4, 2, 1, 2, 1, 1, 1, 6, 3, 2, 1, 1, 1, 6, 3, 2, 1, 2, 1, 1, 3, 2, 1, 3, 8, 4, 2, 1, 3, 2, 1, 1, 3, 7, 5, 5, 8, 4, 2, 1, 4, 2, 1, 3, 3, 7, 6, 3, 15, 9, 29, 28, 14, 7, 6, 3, 3, 8, 4, 2, 1, 4, 2, 1, 14, 7, 12, 6, 3, 3, 9, 5, 12, 6, 3, 8, 4, 2, 1, 3, 29, 18, 9, 18, 9, 10, 5, 13, 8, 4, 2, 1, 15, 12, 6, 3, 9, 6
Offset: 1

Views

Author

Jason Earls, Aug 11 2003

Keywords

Comments

The first few values of n such that 78557*2^n + 1 is a semiprime, where k = 78557 (the conjectured smallest Sierpinski number), are: 2, 3, 7, 15, 17, 18, 24, 60, 71, 89, 92, 107, 140, 143, 163,... Conjecture: there are infinitely many semiprimes of this form.

Examples

			a(51)=29 because k*2^51 + 1 is not a semiprime for k=1,2,...28, but 29*2^51 + 1 = 63839 * 1022920073887 is.
		

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while (bigomega(k*2^n + 1) != 2, k++); k; \\ Michel Marcus, Jul 02 2020