A085245 Least k such that k*2^n + 1 is a semiprime.
4, 2, 1, 2, 1, 1, 1, 6, 3, 2, 1, 1, 1, 6, 3, 2, 1, 2, 1, 1, 3, 2, 1, 3, 8, 4, 2, 1, 3, 2, 1, 1, 3, 7, 5, 5, 8, 4, 2, 1, 4, 2, 1, 3, 3, 7, 6, 3, 15, 9, 29, 28, 14, 7, 6, 3, 3, 8, 4, 2, 1, 4, 2, 1, 14, 7, 12, 6, 3, 3, 9, 5, 12, 6, 3, 8, 4, 2, 1, 3, 29, 18, 9, 18, 9, 10, 5, 13, 8, 4, 2, 1, 15, 12, 6, 3, 9, 6
Offset: 1
Keywords
Examples
a(51)=29 because k*2^51 + 1 is not a semiprime for k=1,2,...28, but 29*2^51 + 1 = 63839 * 1022920073887 is.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..500
Programs
-
PARI
a(n) = my(k=1); while (bigomega(k*2^n + 1) != 2, k++); k; \\ Michel Marcus, Jul 02 2020
Comments