cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085315 Numbers such that first reversing digits and after forming its cube equals the result of first-form-cube and after-reverse operation with exclusion of cases divisible by 10.

Original entry on oeis.org

1, 2, 7, 11, 101, 111, 1001, 1011, 1101, 10001, 10011, 10101, 11001, 11011, 100001, 100011, 100101, 100111, 101001, 101011, 101101, 110001, 110011, 110101, 111001, 1000001, 1000011, 1000101, 1000111, 1001001, 1001011, 1001101, 1010001, 1010011, 1011001, 1100001, 1100011, 1100101, 1101001, 1110001
Offset: 1

Views

Author

Labos Elemer, Jul 01 2003

Keywords

Examples

			n=100111,rev[n]=111001, n^3=1003333697667631.
rev[n^3]=111001^3=1367667963333001=rev[n]^3.
		

Crossrefs

Programs

  • Maple
    r:= n-> (s-> parse(cat(seq(s[-i], i=1..length(s)))))(""||n):
    q:= n-> irem(n, 10)>0 and r(n^3)=r(n)^3:
    select(q, [$1..2000000])[];  # Alois P. Heinz, Oct 22 2021
  • Mathematica
    nd[x_, y_] := 10*x+y; tn[x_] := Fold[nd, 0, x] rt[x_] := tn[Reverse[IntegerDigits[x]]] Do[s=rt[n^3]; s1=rt[n]^3; If[Equal[s, s1]&& !Equal[Mod[n, 10], 0], k=k+1; Print[n]], {n, 1, 10000000}]; k

Formula

Solutions to rev[x^3]=rev[x]^3 without numbers divisible by 10.
{ A069494 } minus { A008592 }. - Alois P. Heinz, Oct 22 2021