cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085358 Runs of zeros in binomial(3k,k)/(2k+1) (Mod 2): relates ternary trees (A001764) to the infinite Fibonacci word (A003849).

Original entry on oeis.org

1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 42, 1, 2, 5, 1, 10, 1, 2, 85, 1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 170, 1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 42, 1, 2, 5, 1, 10, 1, 2, 341, 1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 42, 1, 2, 5, 1, 10, 1, 2, 85, 1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 682, 1, 2, 5, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 25 2003

Keywords

Comments

Has complementary parity to the infinite Fibonacci word: a(n) = 1 - A003849(n) (Mod 2). Records are given by A000975 and occur at Fibonacci numbers: {1,2,5,10,21,42,85,...} occur at {1,2,3,5,8,13,21,...}.

Crossrefs

Cf. A001764 (ternary trees), A003849 (infinite Fibonacci word), A000975 (records), A085357.

Formula

Construction: start with strings S(1)={1} and S(2)={1, 2}; for k>2, let L=largest number in current string S(k); to obtain S(k+1), append S(k-1) to the end of S(k) and then replace the last number in this resulting string with {2L+1 (k odd) or 2L (k even)}. String lengths have Fibonacci growth: {1}, {1, 2}, {1, 2, 5}, {1, 2, 5, 1, 10}, {1, 2, 5, 1, 10, 1, 2, 21}, ...