A085358 Runs of zeros in binomial(3k,k)/(2k+1) (Mod 2): relates ternary trees (A001764) to the infinite Fibonacci word (A003849).
1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 42, 1, 2, 5, 1, 10, 1, 2, 85, 1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 170, 1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 42, 1, 2, 5, 1, 10, 1, 2, 341, 1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 42, 1, 2, 5, 1, 10, 1, 2, 85, 1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 682, 1, 2, 5, 1
Offset: 0
Keywords
Crossrefs
Formula
Construction: start with strings S(1)={1} and S(2)={1, 2}; for k>2, let L=largest number in current string S(k); to obtain S(k+1), append S(k-1) to the end of S(k) and then replace the last number in this resulting string with {2L+1 (k odd) or 2L (k even)}. String lengths have Fibonacci growth: {1}, {1, 2}, {1, 2, 5}, {1, 2, 5, 1, 10}, {1, 2, 5, 1, 10, 1, 2, 21}, ...
Comments