cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085367 Semiprimes that can be expressed as the sum or difference of two cubes: intersection of A001358 and A045980.

Original entry on oeis.org

9, 26, 35, 65, 91, 133, 169, 215, 217, 218, 335, 341, 386, 407, 469, 485, 511, 559, 721, 737, 793, 817, 866, 973, 1027, 1115, 1141, 1241, 1261, 1267, 1339, 1343, 1385, 1387, 1538, 1603, 1685, 1727, 1843, 1853, 1981, 2071, 2189, 2402, 2413, 2611, 2743, 2771
Offset: 1

Views

Author

Hugo Pfoertner, Jun 25 2003

Keywords

Examples

			a(1)=9 because 2^3+1^3=3*3, a(2)=26=3^3-1^3=2*13.
a(5)=91 is the smallest semiprime expressible in two different ways: 91=4^3+3^3=6^3-5^3=7*13.
		

Crossrefs

Programs

  • PARI
    T=thueinit('z^3+1);
    is(n)=bigomega(n)==2 && #thue(T, n)
    list(lim)=my(v=List()); forprime(p=2,lim\2, forprime(q=2,min(lim\p,p), if(#thue(T, p*q), listput(v,p*q)))); Set(v) \\ Charles R Greathouse IV, Nov 29 2014