A085367 Semiprimes that can be expressed as the sum or difference of two cubes: intersection of A001358 and A045980.
9, 26, 35, 65, 91, 133, 169, 215, 217, 218, 335, 341, 386, 407, 469, 485, 511, 559, 721, 737, 793, 817, 866, 973, 1027, 1115, 1141, 1241, 1261, 1267, 1339, 1343, 1385, 1387, 1538, 1603, 1685, 1727, 1843, 1853, 1981, 2071, 2189, 2402, 2413, 2611, 2743, 2771
Offset: 1
Keywords
Examples
a(1)=9 because 2^3+1^3=3*3, a(2)=26=3^3-1^3=2*13. a(5)=91 is the smallest semiprime expressible in two different ways: 91=4^3+3^3=6^3-5^3=7*13.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
PARI
T=thueinit('z^3+1); is(n)=bigomega(n)==2 && #thue(T, n) list(lim)=my(v=List()); forprime(p=2,lim\2, forprime(q=2,min(lim\p,p), if(#thue(T, p*q), listput(v,p*q)))); Set(v) \\ Charles R Greathouse IV, Nov 29 2014