A085379 Greatest prime as sum of distinct divisors of n.
3, 3, 7, 5, 11, 7, 13, 13, 17, 11, 23, 13, 23, 23, 31, 17, 37, 19, 41, 31, 23, 23, 59, 31, 41, 37, 53, 29, 71, 31, 61, 47, 53, 47, 89, 37, 59, 53, 89, 41, 89, 43, 83, 73, 71, 47, 113, 7, 83, 71, 97, 53, 113, 71, 113, 79, 89, 59, 167, 61, 31, 103, 127, 83, 139, 67
Offset: 2
Keywords
Examples
The divisors of n = 50 are {1,2,5,10,25,50}, the sums of distinct divisors that are prime: 2, 3 = 2+1, 5, 7 = 5+2, 11 = 10+1, 13 = 10+2+1, 17 = 10+5+2, 31 = 25+5+1, 37 = 25+10+2, 41 = 25+10+5+1, 43 = 25+10+5+2+1, 53 = 50+2+1, 61 = 50+10+1, 67 = 50+10+5+2 and 83 = 50+25+5+2+1. Therefore a(50) = 83 < 89 = A070801(50) and A085381(3) = 50.
Links
- Amiram Eldar, Table of n, a(n) for n = 2..10001
- Eric Weisstein's World of Mathematics, Divisor Function.
Programs
-
Mathematica
a[n_] := Module[{d = Divisors[n], c, x}, c = Rest@CoefficientList[Series[Product[1 + x^d[[i]], {i, 1, Length[d]}], {x, 0, Total[d]}], x]; Max[Select[Position[c, ?(# > 0 &)] // Flatten, PrimeQ]]]; Array[a, 100, 2] (* _Amiram Eldar, Mar 01 2024 *)