A085407 Runs of zeros in binomial(3k+2,k+1)/(3k+2) modulo 2 (A085405).
1, 1, 3, 1, 5, 1, 1, 11, 1, 1, 3, 1, 21, 1, 1, 3, 1, 5, 1, 1, 43, 1, 1, 3, 1, 5, 1, 1, 11, 1, 1, 3, 1, 85, 1, 1, 3, 1, 5, 1, 1, 11, 1, 1, 3, 1, 21, 1, 1, 3, 1, 5, 1, 1, 171, 1, 1, 3, 1, 5, 1, 1, 11, 1, 1, 3, 1, 21, 1, 1, 3, 1, 5, 1, 1, 43, 1, 1, 3, 1, 5, 1, 1, 11, 1, 1, 3, 1, 341, 1, 1, 3, 1, 5, 1, 1, 11
Offset: 1
Keywords
Examples
To generate string S(4) at k=4: concatenate {S(1),S(2)} = {1, 1,3}, then replace the last number L=3 by 4*L-1=11 to obtain S(4)={1,1,11}. At k=5: concatenate {S(1),S(2),S(3)} = {1, 1,3, 1,5}, then replace the last number L=5 by 4*L+1=21 to obtain S(5)={1,1,3,1,21}.
Formula
For n>0, a(F(n))=A001045(n), where F(n) is the n-th Fibonacci number with F(1)=1, F(2)=2.
Comments