cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085407 Runs of zeros in binomial(3k+2,k+1)/(3k+2) modulo 2 (A085405).

Original entry on oeis.org

1, 1, 3, 1, 5, 1, 1, 11, 1, 1, 3, 1, 21, 1, 1, 3, 1, 5, 1, 1, 43, 1, 1, 3, 1, 5, 1, 1, 11, 1, 1, 3, 1, 85, 1, 1, 3, 1, 5, 1, 1, 11, 1, 1, 3, 1, 21, 1, 1, 3, 1, 5, 1, 1, 171, 1, 1, 3, 1, 5, 1, 1, 11, 1, 1, 3, 1, 21, 1, 1, 3, 1, 5, 1, 1, 43, 1, 1, 3, 1, 5, 1, 1, 11, 1, 1, 3, 1, 341, 1, 1, 3, 1, 5, 1, 1, 11
Offset: 1

Views

Author

Paul D. Hanna, Jun 29 2003

Keywords

Comments

Construction: start with strings S(1)={1}, S(2)={1,3}, S(3)={1,5}; to obtain S(k) for k>3, concatenate all previous strings excluding S(k-1), then replace the last number L in this resulting string with {4L-(-1)^k}. This sequence is the limit of S(k) as k grows, generating strings with Fibonacci growth: {1,1,11}, {1,1,3,1,21}, {1,1,3,1,5,1,1,43}, {1,1,3,1,5,1,1,11,1,1,3,1,85}, ...

Examples

			To generate string S(4) at k=4: concatenate {S(1),S(2)} = {1, 1,3}, then replace the last number L=3 by 4*L-1=11 to obtain S(4)={1,1,11}.
At k=5: concatenate {S(1),S(2),S(3)} = {1, 1,3, 1,5}, then replace the last number L=5 by 4*L+1=21 to obtain S(5)={1,1,3,1,21}.
		

Crossrefs

Cf. A006013, A001045, A085405, A022340 (positions of ones).

Formula

For n>0, a(F(n))=A001045(n), where F(n) is the n-th Fibonacci number with F(1)=1, F(2)=2.