A085410 Total number of parts in all partitions of n into relatively prime parts.
1, 2, 5, 9, 19, 27, 53, 74, 122, 170, 274, 355, 555, 724, 1043, 1377, 1964, 2487, 3497, 4429, 5993, 7622, 10205, 12701, 16831, 20964, 27166, 33756, 43452, 53296, 68134, 83464, 105086, 128495, 160803, 195006, 242811, 293701, 362026, 436842, 536103
Offset: 1
Examples
Partitions of 6 into relatively prime parts are: 1+1+1+1+1+1, 1+1+1+1+2, 1+1+2+2, 1+1+1+3, 1+2+3, 1+1+4, 1+5; total number of parts is a(6)=6+5+4+4+3+3+2=27.
Programs
-
Mathematica
f[n_] := Sum[DivisorSigma[0, m] PartitionsP[n - m], {m, 1, n}]; MT[n_] := Block[{d = Divisors[n]}, Plus @@ (MoebiusMu /@ (n/d)*f /@ d)]; Table[ MT[n], {n, 1, 41}]
-
PARI
a006128(n) = sum(m=1, n, numdiv(m)*numbpart(n - m)); a(n) = sumdiv(n, d, moebius(n/d)*a006128(d)); \\ Indranil Ghosh, Apr 25 2017
-
Python
from sympy import divisors, divisor_count, npartitions, mobius def a006128(n): return sum([divisor_count(m)*npartitions(n - m) for m in range(1, n + 1)]) def a(n): return sum([mobius(n/d)*a006128(d) for d in divisors(n)]) # Indranil Ghosh, Apr 25 2017
Extensions
More terms from Robert G. Wilson v, Aug 17 2003