cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A085839 a(0)=1, a(1)=3, a(n) = floor((Pi + 1/Pi)*a(n-1) - a(n-2)).

Original entry on oeis.org

1, 3, 9, 28, 87, 273, 857, 2692, 8457, 26568, 83465, 262212, 823762, 2587924, 8130202, 25541782, 80241874, 252087281, 791955549, 2488001734, 7816287969, 24555592861, 77143670136, 242353987370, 761377506289, 2391937980365
Offset: 0

Views

Author

Gary W. Adamson, Jul 05 2003

Keywords

Comments

a(n+1)/a(n) converges to Pi.

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Floor[(Pi + 1/Pi)a[n - 1] - a[n - 2]]; Table[a[n], {n, 0, 25}] (* Robert G. Wilson v *)
    nxt[{a_,b_}]:=Module[{c=Pi+1/Pi},{b,Floor[b*c-a]}]; NestList[nxt,{1,3},30][[All,1]] (* Harvey P. Dale, Oct 07 2018 *)

Extensions

Edited by Don Reble, Nov 14 2005
Definition corrected by Robert G. Wilson v, Apr 26 2006

A085560 a(0) = 1, then (for n>0) a(n) = floor[(e + 1/e)*a(n-1) - a(n-2)].

Original entry on oeis.org

1, 3, 8, 21, 56, 151, 410, 1114, 3027, 8227, 22362, 60785, 165230, 449141, 1220891, 3318725, 9021229, 24522242, 66658364, 181196219, 492542389, 1338869025, 3639423341, 9892978333, 26891903231, 73099771885, 198705781579
Offset: 0

Views

Author

Gary W. Adamson, Jul 05 2003

Keywords

Comments

A recursive series with [a(n+1)/a(n)] converging to e.
a(15)/a(14) = 3318725/1220891 = 2.71828115... floor[log a(n)] = n. Example: log a(15) = log 3318725 = 15.01509...; floor(15.015...) = 15.

Examples

			a(5) = 151 = floor[(e + 1/e)*a(4) - a(3)] = floor[(e + 1/e)(56) - 21].
		

Crossrefs

Cf. A085421.

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; a[n_] := a[n] = Floor[(E + 1/E)*a[n - 1] - a[n - 2]]; Table[ a[n], {n, 0, 27}]

Extensions

More terms from Robert G. Wilson v, Jul 13 2003
Showing 1-2 of 2 results.