cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A095077 Primes with four 1-bits in their binary expansion.

Original entry on oeis.org

23, 29, 43, 53, 71, 83, 89, 101, 113, 139, 149, 163, 197, 263, 269, 277, 281, 293, 337, 353, 389, 401, 449, 523, 547, 593, 643, 673, 773, 1031, 1049, 1061, 1091, 1093, 1097, 1217, 1283, 1289, 1297, 1409, 1553, 1601, 2069, 2083, 2089, 2129
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Subsequence of A027699. First differs from A085448 at n = 19, where a(n)=337, while A085448 continues from there with 311, whose binary expansion has six 1-bits, not four. Cf. A095057.
Cf. A000215 (primes having two bits set), A081091 (three bits set).
Cf. A264908.

Programs

  • Mathematica
    Select[Prime[Range[320]], Plus@@IntegerDigits[#, 2] == 4 &] (* Alonso del Arte, Jan 11 2011 *)
    Select[ Flatten[ Table[2^i + 2^j + 2^k + 1, {i, 3, 11}, {j, 2, i - 1}, {k, j - 1}]], PrimeQ] (* Robert G. Wilson v, Jul 30 2016 *)
  • PARI
    bits1_4(x) = { nB = floor(log(x)/log(2)); z = 0;
    for(i=0,nB,if(bittest(x,i),z++;if(z>4,return(0););););
    if(z == 4, return(1);, return(0););};
    forprime(x=17,2129,if(bits1_4(x),print1(x, ", ");););
    \\ Washington Bomfim, Jan 11 2011
    
  • PARI
    is(n)=isprime(n) && hammingweight(n)==4 \\ Charles R Greathouse IV, Jul 30 2016
    
  • PARI
    list(lim)=my(v=List(),t); for(a=3,logint(lim\=1,2), for(b=2,a-1, for(c=1,b-1, t=1<lim, return(Vec(v))); if(isprime(t), listput(v,t))))); Vec(v) \\ Charles R Greathouse IV, Jul 30 2016
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    from sympy.utilities.iterables import multiset_permutations
    def A095077_gen(): # generator of terms
        return filter(isprime,map(lambda s:int('1'+''.join(s)+'1',2),(s for l in count(2) for s in multiset_permutations('0'*(l-2)+'11'))))
    A095077_list = list(islice(A095077_gen(),30)) # Chai Wah Wu, Jul 19 2022

A255564 Primes having in binary representation a nonprime number of 1's.

Original entry on oeis.org

2, 23, 29, 43, 53, 71, 83, 89, 101, 113, 139, 149, 163, 197, 263, 269, 277, 281, 293, 311, 317, 337, 347, 349, 353, 359, 373, 383, 389, 401, 449, 461, 467, 479, 503, 509, 523, 547, 571, 593, 599, 619, 643, 673, 683, 691, 739, 751, 773, 797, 811, 821, 839, 853, 857, 863, 881, 887, 907, 937, 977, 983, 991, 1013, 1019, 1021, 1031, 1049, 1061
Offset: 1

Views

Author

Antti Karttunen, May 14 2015

Keywords

Comments

Equally: 2 followed by all primes with their hamming weight a composite number.

Examples

			2, which in binary (A007088) is "10", has just one 1-bit, and 1 is not a prime, thus 2 is included in the sequence.
23, which in binary is "10111", has four 1-bits, and 4 is not a prime, thus 23 is included in the sequence.
		

Crossrefs

Complement among primes: A081092.
Intersection of A000040 and A084345.
Subsequences: A027699 \ A019434, A085448, A095077, A255569.
Cf. A000120.

Programs

  • PARI
    i = 0; forprime(n=2, 2^31, if(!isprime(hammingweight(n)), i++; write("b255564.txt", i, " ", n); if(i>=10000,return(n))));
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library
    (define A255564 (MATCHING-POS 1 1 (lambda (n) (and (prime? n) (not (prime? (A000120 n)))))))
Showing 1-2 of 2 results.