cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A085458 a(n) = 4*Sum_{i=0..n-1} C(2*i+1, i)*C(n-1, n-1-i)*(-1)^(n-1-i)*2^i for n > 0, a(0) = 1.

Original entry on oeis.org

1, 4, 20, 116, 708, 4452, 28532, 185300, 1215268, 8030404, 53381844, 356577588, 2391430020, 16092704292, 108605848116, 734783381652, 4982063186916, 33844621986180, 230306722637204, 1569571734301172, 10711405584991300
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jul 02 2003

Keywords

Crossrefs

Cf. A085456 (signed version).

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[(1 + x)/(1 - 7x)], {x, 0, 25}], x]
  • PARI
    x='x+O('x^66); Vec(sqrt((1+x)/(1-7*x))) \\ Joerg Arndt, May 10 2013

Formula

G.f.: sqrt((1 + x)/(1 - 7*x)).
7^n = Sum_{i=0..n} Sum_{j=0..i} (-1)^(n-i)*a(j)*a(i-j).
Recurrence: n*a(n) = 2*(3*n-1)*a(n-1) + 7*(n-2)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 2*sqrt(2)*7^(n-1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 14 2012

A085457 Sum_{i=0..n} Sum_{j=0..i} a(j) * a(i-j) = (-11)^n.

Original entry on oeis.org

1, -6, 48, -438, 4206, -41586, 418980, -4277130, 44089320, -457891170, 4783741248, -50218890738, 529300238574, -5597562756894, 59366869030668, -631200956847558, 6725615443683870, -71800018913609970, 767806202604650880, -8223081959016322530, 88187484604146004506
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jul 01 2003

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1+11 x)], {x, 0, 20}], x]
  • PARI
    a(n) = sum(k=0, n, (-3)^k*binomial(n-1, n-k)*binomial(2*k, k)); \\ Seiichi Manyama, Feb 03 2023

Formula

G.f.: A(x)=Sqrt((1-x)/(1+11x)).
From Seiichi Manyama, Feb 03 2023: (Start)
a(n) = Sum_{k=0..n} (-3)^k * binomial(n-1,n-k) * binomial(2*k,k).
n*a(n) = -2*(5*n-2)*a(n-1) + 11*(n-2)*a(n-2). (End)
Showing 1-2 of 2 results.