A085480 Expansion of 3*x*(1+2*x)/(1-3*x-3*x^2).
0, 3, 15, 54, 207, 783, 2970, 11259, 42687, 161838, 613575, 2326239, 8819442, 33437043, 126769455, 480619494, 1822166847, 6908359023, 26191577610, 99299809899, 376474162527, 1427321917278, 5411388239415, 20516130470079
Offset: 1
Examples
a(4) = q^4 + q^4 = 207; p^5 + q^5 = 783, where p = (3 + sqrt(21))/2, q = (3 - sqrt(21))/2.
References
- Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", Wiley, 2001, p. 471.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (3,3).
Crossrefs
Cf. A030195.
Programs
-
Mathematica
CoefficientList[Series[3x (1+2x)/(1-3x-3x^2),{x,0,30}],x] (* or *) LinearRecurrence[{3,3},{0,3,15},30] (* Harvey P. Dale, Jan 10 2021 *)
Formula
a(n) = p^n + q^n, where p = (3 + sqrt(21))/2, q = (3 - sqrt 21)/2.
a(n) = 3*a(n-1) + 3*a(n-2), a(1)=3, a(2)=15. - Philippe Deléham, Nov 19 2008
G.f.: G(0)/x - 2/x, where G(k) = 1 + 1/(1 - x*(7*k-3)/(x*(7*k+4) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013
Extensions
Zero prepended by Harvey P. Dale, Jan 10 2021
Comments