A085585 Squares with exactly one odd digit.
1, 9, 16, 25, 36, 49, 81, 100, 144, 225, 256, 289, 324, 441, 625, 676, 784, 841, 900, 1024, 1444, 1600, 2025, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 3600, 3844, 4096, 4225, 4489, 4900, 6241, 6724, 6889, 8100, 8281, 8649, 8836, 9604, 10000, 10404
Offset: 1
Examples
20164 is a term because 20164 = 142^2 and 20164 has exactly one odd digit.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) nops(select(type,convert(n,base,10),even))=1 end proc: select(filter, [seq(i^2, i=1..10000)]); # Robert Israel, Sep 29 2023
-
Mathematica
bb={}; Do[idp=IntegerDigits[n^2]; len=Length[idp]; If[Sum[Mod[idp[[i]], 2], {i, len}]==1, bb={bb, n}], {n, 200}]; Flatten[bb]^2 Select[Range[150]^2,Count[IntegerDigits[#],?OddQ]==1&] (* _Harvey P. Dale, Jul 27 2025 *)
Extensions
Name and example edited by Jon E. Schoenfield, Sep 29 2023
Comments