cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085585 Squares with exactly one odd digit.

Original entry on oeis.org

1, 9, 16, 25, 36, 49, 81, 100, 144, 225, 256, 289, 324, 441, 625, 676, 784, 841, 900, 1024, 1444, 1600, 2025, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 3600, 3844, 4096, 4225, 4489, 4900, 6241, 6724, 6889, 8100, 8281, 8649, 8836, 9604, 10000, 10404
Offset: 1

Views

Author

Zak Seidov, Jul 06 2003

Keywords

Comments

If k is a term, then so is 100*k. - Robert Israel, Sep 29 2023

Examples

			20164 is a term because 20164 = 142^2 and 20164 has exactly one odd digit.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) nops(select(type,convert(n,base,10),even))=1 end proc:
    select(filter, [seq(i^2, i=1..10000)]); # Robert Israel, Sep 29 2023
  • Mathematica
    bb={}; Do[idp=IntegerDigits[n^2]; len=Length[idp]; If[Sum[Mod[idp[[i]], 2], {i, len}]==1, bb={bb, n}], {n, 200}]; Flatten[bb]^2
    Select[Range[150]^2,Count[IntegerDigits[#],?OddQ]==1&] (* _Harvey P. Dale, Jul 27 2025 *)

Extensions

Name and example edited by Jon E. Schoenfield, Sep 29 2023