A085642 Number of columns in the character table of the symmetric group S_n that have zero sum.
0, 1, 1, 2, 3, 6, 8, 12, 17, 26, 35, 49, 66, 92, 121, 161, 211, 280, 360, 466, 596, 766, 968, 1225, 1538, 1935, 2408, 2996, 3707, 4588, 5636, 6918, 8456, 10329, 12552, 15236, 18431, 22275, 26817, 32242, 38661, 46306, 55294, 65942, 78464, 93252, 110561
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
- Arvind Ayyer, Hiranya Kishore Dey, and Digjoy Paul, How large is the character degree sum compared to the character table sum for a finite group?, arXiv preprint arXiv:2406.06036 [math.RT], 2024. See p. 6.
- Arvind Ayyer, Hiranya Kishore Dey, and Digjoy Paul, On the sum of the entries in a character table, Proc. 36th Conf. Formal Power Series Alg. Comb., Sem. Lotharingien Comb (2024) Vol. 91B, Art. No. 99.
- Christine Bessenrodt and Jorn Olsson, On the sequence A085642
- Dominique Gouyou-Beauchamps and Philippe Nadeau, Signed Enumeration of Ribbon Tableaux with Local Rules and Generalizations of the Schensted Correspondence, in Formal Power Series and Algebraic Combinatorics, Nankai University, Tianjin, China, 2007.
- Dominique Gouyou-Beauchamps and Philippe Nadeau, Signed enumeration of ribbon tableaux: an approach through growth diagrams, Journal of Algebraic Combinatorics, 2011; DOI 10.1007/s10801-011-0324-2.
Programs
-
Mathematica
Rest[PartitionsP[Range[0,47]] - CoefficientList[Series[Product[(1+x^(2 k - 1))/(1 - x^(2 k)), {k,48}], {x,0,47}], x]] (* Wouter Meeussen, Dec 20 2017 *)
Formula
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - Vaclav Kotesovec, Jul 11 2018
Extensions
Corrected and extended by Vladeta Jovovic, Jul 12 2003
More terms from David Wasserman, Feb 08 2005
Comments