A331029 Least integer of each composite prime signature where primes ending in 1 or 9 are treated distinctly from those ending in 3 or 7.
1, 3, 9, 11, 21, 27, 33, 63, 81, 99, 121, 189, 209, 231, 243, 273, 297, 363, 441, 567, 627, 693, 729, 819, 891, 1089, 1323, 1331, 1701, 1881, 2079, 2187, 2299, 2457, 2541, 2673, 3003, 3267, 3969, 3993, 4389, 4641, 4851, 5103, 5643, 5733, 6061, 6237, 6561, 6897
Offset: 1
Examples
Primes in this sequence are 3 and 11 because these are the smallest primes in the two classes. Semiprimes in this sequence are 9 = 3^2, 21 = 3*7, 33 = 3*11, 121 = 11^2, 209 = 11*19 because 3, 7 are the smallest primes ending with either 3 or 7 and 11, 19 are the smallest primes ending with either 1 or 9.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
PARI
GenS(lim, pred)={my(L=List(), S=[1]); forprime(p=2, oo, if(pred(p), listput(L,S); my(pp=vector(logint(lim, p), i, p^i)); S=concat([k*pp[1..min(if(k>1, my(f=factor(k)[,2]); f[#f], oo), logint(lim\k, p))] | k<-S]); if(!#S, return(Set(concat(L)))) ))} Merge(s1, s2, lim)={Set(concat(vector(#s1, i, [t | t<-s1[i]*s2, t<=lim])))} lista331029(lim)={Merge(GenS(lim, k->abs(k%10-5)==2), GenS(lim, k->abs(k%10-5)==4), lim)} { lista331029(10^4) }
Comments