A085721 Semiprimes whose prime factors have an equal number of digits in binary representation.
4, 6, 9, 25, 35, 49, 121, 143, 169, 289, 323, 361, 391, 437, 493, 527, 529, 551, 589, 667, 713, 841, 899, 961, 1369, 1517, 1591, 1681, 1739, 1763, 1849, 1927, 1961, 2021, 2173, 2183, 2209, 2257, 2279, 2419, 2491, 2501, 2537, 2623, 2773, 2809
Offset: 1
Examples
A078972(35) = 527 = 17*31 -> 10001*11111, therefore 527 is a term; A078972(37) = 533 = 13*41 -> 1101*101001, therefore 533 is not a term; A001358(1920) = 7169 = 67*107 -> 1000011*1101011: therefore 7169 a term, but not of A078972.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Dario A. Alpern, Brilliant Numbers.
Crossrefs
Programs
-
Haskell
a085721 n = a085721_list !! (n-1) a085721_list = [p*q | (p,q) <- zip a084126_list a084127_list, a070939 p == a070939 q] -- Reinhard Zumkeller, Nov 10 2013
-
Mathematica
fQ[n_] := Block[{fi = FactorInteger@ n}, Plus @@ Last /@ fi == 2 && IntegerLength[ fi[[1, 1]], 2] == IntegerLength[ fi[[-1, 1]], 2]]; Select[ Range@ 2866, fQ] (* Robert G. Wilson v, Oct 29 2011 *) Select[Range@ 3000, And[Length@ # == 2, IntegerLength[#1, 2] == IntegerLength[#2, 2] & @@ #] &@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger@ #] &] (* Michael De Vlieger, Oct 08 2016 *)
-
PARI
is(n)=bigomega(n)==2&binary(factor(n)[1,1])==#binary(n/factor(n)[1,1]) \\ Charles R Greathouse IV, Nov 08 2011
Extensions
Edited by Charles R Greathouse IV, Aug 02 2010
Comments