A085737 Numerators in triangle formed from Bernoulli numbers.
1, 1, 1, 1, 1, 1, 0, 1, 1, 0, -1, 1, 2, 1, -1, 0, -1, 1, 1, -1, 0, 1, -1, -1, 8, -1, -1, 1, 0, 1, -1, 4, 4, -1, 1, 0, -1, 1, -1, -4, 8, -4, -1, 1, -1, 0, -1, 1, -8, 4, 4, -8, 1, -1, 0, 5, -5, 7, 4, -116, 32, -116, 4, 7, -5, 5, 0, 5, -5, 32, -28, 16, 16, -28, 32, -5, 5, 0
Offset: 0
Examples
Triangle of fractions begins 1; 1/2, 1/2; 1/6, 1/3, 1/6; 0, 1/6, 1/6, 0; -1/30, 1/30, 2/15, 1/30, -1/30; 0, -1/30, 1/15, 1/15, -1/30, 0; 1/42, -1/42, -1/105, 8/105, -1/105, -1/42, 1/42; 0, 1/42, -1/21, 4/105, 4/105, -1/21, 1/42, 0; -1/30, 1/30, -1/105, -4/105, 8/105, -4/105, -1/105, 1/30, -1/30;
Links
- Fabien Lange and Michel Grabisch, The interaction transform for functions on lattices Discrete Math. 309 (2009), no. 12, 4037-4048. [From _N. J. A. Sloane_, Nov 26 2011]
- Peter Luschny, The computation and asymptotics of the Bernoulli numbers.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [_Peter Luschny_, May 04 2012]
Crossrefs
Programs
-
Maple
nmax:=11; for n from 0 to nmax do T(n, 0):= (-1)^n*bernoulli(n) od: for n from 1 to nmax do for k from 1 to n do T(n, k) := T(n-1, k-1) - T(n, k-1) od: od: for n from 0 to nmax do seq(T(n, k), k=0..n) od: seq(seq(numer(T(n, k)), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 29 2011, revised Nov 25 2012
-
Mathematica
t[n_, 0] := (-1)^n*BernoulliB[n]; t[n_, k_] := t[n, k] = t[n-1, k-1] - t[n, k-1]; Table[t[n, k] // Numerator, {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 07 2014 *)
-
Sage
def BernoulliDifferenceTable(n) : def T(S, a) : R = [a] for s in S : a -= s R.append(a) return R def M(A, p) : R = T(A,0) S = add(r for r in R) return -S / (2*p+3) R = [1/1] A = [1/2,-1/2]; R.extend(A) for k in (0..n-2) : A = T(A,M(A,k)); R.extend(A) A = T(A,0); R.extend(A) return R def A085737_list(n) : return [numerator(q) for q in BernoulliDifferenceTable(n)] # Peter Luschny, May 04 2012
Formula
T(n, 0) = (-1)^n*Bernoulli(n), T(n, k) = T(n-1, k-1) - T(n, k-1) for k=1..n.
T(n,k) = Sum_{j=0..k} binomial(k,j)*Bernoulli(n-j). [Lange and Grabisch]
Extensions
Sign flipped in formula by Johannes W. Meijer, Jun 29 2011
Comments