A085738 Denominators in triangle formed from Bernoulli numbers.
1, 2, 2, 6, 3, 6, 1, 6, 6, 1, 30, 30, 15, 30, 30, 1, 30, 15, 15, 30, 1, 42, 42, 105, 105, 105, 42, 42, 1, 42, 21, 105, 105, 21, 42, 1, 30, 30, 105, 105, 105, 105, 105, 30, 30, 1, 30, 15, 105, 105, 105, 105, 15, 30, 1, 66, 66, 165, 165, 1155, 231, 1155, 165, 165, 66, 66
Offset: 0
Examples
Triangle begins 1 1/2, 1/2 1/6, 1/3, 1/6 0, 1/6, 1/6, 0 -1/30, 1/30, 2/15, 1/30, -1/30 0, -1/30, 1/15, 1/15, -1/30, 0 1/42, -1/42, -1/105, 8/105, -1/105, -1/42, 1/42 0, 1/42, -1/21, 4/105, 4/105, -1/21, 1/42, 0 -1/30, 1/30, -1/105, -4/105, 8/105, -4/105, -1/105, 1/30, -1/30
Links
- Fabien Lange and Michel Grabisch, The interaction transform for functions on lattices Discrete Math. 309 (2009), no. 12, 4037-4048. [From _N. J. A. Sloane_, Nov 26 2011]
- Peter Luschny, The computation and asymptotics of the Bernoulli numbers.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [_Peter Luschny_, May 04 2012]
Crossrefs
Programs
-
Mathematica
t[n_, 0] := (-1)^n BernoulliB[n]; t[n_, k_] := t[n, k] = t[n-1, k-1] - t[n, k-1]; Table[t[n, k] // Denominator, {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 04 2019 *)
-
Sage
# uses[BernoulliDifferenceTable from A085737] def A085738_list(n): return [q.denominator() for q in BernoulliDifferenceTable(n)] A085738_list(6) # Peter Luschny, May 04 2012
Formula
T(n, 0) = (-1)^n*Bernoulli(n); T(n, k) = T(n-1, k-1) - T(n, k-1) for k=1..n. [Corrected (sign flipped) by R. J. Mathar, Jun 02 2010]
Let U(m, n) = (-1)^(m + n)*T(m+n, n). Then the e.g.f. for U(m, n) is (x - y)/(e^x - e^y). - Ira M. Gessel, Jun 12 2021
Comments