A085838 Triangle T(n,k) read by rows; given by [0,1,0,1,0,1,0,1,...] DELTA [1,1,1,2,1,3,1,4,1,5,1,6,...], where DELTA is Deléham's operator defined in A084938.
1, 0, 1, 0, 1, 2, 0, 1, 5, 5, 0, 1, 9, 22, 15, 0, 1, 14, 60, 98, 52, 0, 1, 20, 130, 366, 457, 203, 0, 1, 27, 245, 1031, 2190, 2254, 877, 0, 1, 35, 420, 2436, 7652, 13251, 11788, 4140, 0, 1, 44, 672, 5096, 21862, 55499, 82288, 65330, 21147, 0, 1, 54, 1020, 9744, 54216, 186595, 402582, 528400, 382948, 115975
Offset: 0
Examples
1; 0, 1; 0, 1, 2; 0, 1, 5, 5; 0, 1, 9, 22, 15; 0, 1, 14, 60, 98, 52; 0, 1, 20, 130, 366, 457, 203; 0, 1, 27, 245, 1031, 2190, 2254, 877; 0, 1, 35, 420, 2436, 7652, 13251, 11788, 4140;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Mathematica
m = 13; (* DELTA is defined in A084938 *) DELTA[Table[{0, 1}, {m/2 // Ceiling}] // Flatten, LinearRecurrence[{0, 2, 0, -1}, {1, 1, 1, 2}, m], m] // Flatten (* Jean-François Alcover, Feb 19 2020 *)
Formula
Sum_{k=0..n} (-x)^(n-k)*T(n,k) = A090365(n), A000110(n), A000012(n), A010892(n) for x=-1, 0, 1, 2. - Philippe Deléham, Oct 26 2006
Comments