A085811 Number of partitions of n including 3, but not 1.
0, 0, 1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88, 105, 137, 165, 210, 253, 320, 383, 478, 574, 708, 847, 1039, 1238, 1507, 1794, 2167, 2573, 3094, 3660, 4378, 5170, 6153, 7245, 8591, 10087, 11914, 13959, 16424, 19196, 22519, 26252, 30701
Offset: 1
Keywords
Examples
a(3): 3 a(5): 2+3 a(6): 3+3 a(7): 2+2+3, 3+4 a(8): 2+3+3, 3+5 a(9): 2+3+4, 2+2+2+3, 3+3+3, 3+6 a(10): 2+3+5, 2+2+3+3, 3+7, 3+3+4 a(11): 2+2+3+4, 2+3+6, 2+2+2+2+3, 2+3+3+3, 3+4+4, 3+8, 3+3+5, a(12): 2+2+2+3+3, 2+3+3+4, 2+3+7, 2+2+3+5, 3+9, 3+3+6, 3+4+5, 3+3+3+3 a(13): 2+2+2+2+2+3, 2+2+2+3+4, 2+2+3+6, 2+2+3+3+3, 2+3+4+4, 2+3+3+5, 2+3+8, 3+10, 3+3+7, 3+4+6, 3+5+5, 3+3+3+4
Links
- Andrew van den Hoeven, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_] := Block[{c = 0, k = 1, m = PartitionsP[n], p = IntegerPartitions[n] }, While[k < m, If[ Count[ p[[k]], 3] > 0 && Count[ p[[k]], 1] == 0, c++ ]; k++ ]; c]; Table[ f[n], {n, 1, 53}] (* second program: *) CoefficientList[x^2*(1-x)/QPochhammer[x] + O[x]^60, x] (* Jean-François Alcover, Jan 22 2016, after Joerg Arndt *)
-
PARI
x='x+O('x^66); /* about that many terms */ v=Vec((x^3*(1-x)/eta(x))) /* Joerg Arndt, Feb 03 2012 */
Formula
A002865(n) = a(n+3). - James Sellers, Dec 06 2005.
G.f.: x^3*(1-x)/prod(n>=1, 1-x^n). [Joerg Arndt, Feb 03 2012]
G.f.: x^2 + x^3*(1 - G(0))/(1-x) where G(k) = 1 - x/(1-x^(k+1))/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 23 2013
Extensions
Edited, corrected and extended by Robert G. Wilson v
Typo in formula corrected by Andrew van den Hoeven, Nov 20 2014
Comments